Formal Specificationof Fault Toleranceand its Relation to Computer Security

D.G.Weber

Odyssg ResearclAssociatesinc.
301AHarrisB. DatesDrive
Ithaca,NY 14850-1313
6072772020

Abstract

Thetedhniquesof formal verificationare onemeandor
gaining greater assuance of the correctnessof softwae.
Thesetechniquesrequire precisespecificationof the prop-
ertiesto be assued. This paperformulatesprecisespecifi-
cationscorrespondingo the intuitive notionsof “fault tol-
erance” andof “gr acefuldegradation”. Ananalagyis con-
structedbetweerthesefault-tolerancespecificationand a
particular classof specificationgor computersecurity On
the basisof this analagy, it is arguedthat formal verifica-
tion of fault tolerancewill facesomeof the sameproblems,
and benefitfrom someof the samesolutions as verification
of security

1 Intr oduction

In thispaperwewill beconcerneavith specificatiorand
verificationof fault-toleranceproperties.We will be seek-
ing aprecisedefinitionof theterm*“f aulttolerance’andask-
ing what stepsmustbe takento prove thata systemdesign
is in factfault tolerantaccordingto the definition. We will
be only minimally concernedwith strateies,designsand
algorithmsusedto implementfault-tolerantsystems,and
only thenasexamplesto shonv why a particulardefinition
of “faulttolerance’is relevant.

Onepreviouseffort toward verifying fault tolerancecan

OThiswork wassupportedy theAir ForceSystemsCommandaitRome
Air DevelopmentCenterunder ContractNo. F30602-86-C-0263.The
views andconclusiongontainedn this paperarethoseof theauthorsand
shouldnot be interpretedas necessarilyepresentindhe official policies,
eitherexpressedr implied, of the Air Forceor theU.S.Government.

Opermissiorto copy without fee all or partof this materialis granted
providedthatthe copiesarenot madeor distributedfor directcommercial
adwantagethe ACM copyright noticeandthetitle of the publicationand
its dateappear and noticeis given that copying is by permissionof the
Associatiorfor ComputingMachinery To copy otherwisepr to republish,
requiresafee and/orspecificpermission.

be foundin the SIFT project(Software Implemented-ault
Tolerance)[11]. SIFT was an ultra-reliablefault-tolerant
computerdesignedfor aircraft flight control. A precise
modelof this systemwasdeveloped andconstraintgspeci-
fications)onthemodelwhichimpliedthecorrectnessf the
systemwere written down. However, the SIFT approach
differs from ours, in that the propertyof “fault tolerance”
was never consideredn isolation, but was alwaysimplic-

itly subsumedhn the othersystemspecificationsOnecould

notprove,or evenstate thatSIFT wasfaulttolerantwithout

additionallystatingandproving thatit satisfiedmary other
correctnespropertiesaswell. We intendto find adefinition

of faulttolerancehatcanstandby itself.

The remainderof this section discussesfactors that
should be excluded from a formal specificationof com-
putersystemproperties. Section2 developsspecifications
for faulttoleranceandgracefuldegradation.In section3 we
considewerificationof systemsagainsthesespecifications.
This entirepaperis condensedrom [9]. A morecomplete
discussiondevelopmentof fault-toleranceproperties,and
examplescanbefoundthere.

1.1 Fault Scenariosand MTTF

A systems fault toleranceis sometimesxpressedsa
meantime to failure (MTTF). One goal of a verification
methodologyfor fault-tolerantsystemsmight be to prove
that a systems MTTF exceedssomevalue. However, the
MTTF is not just a propertyof a computersystembut in-
volvesthe ernvironmentof that systemaswell. A measure
of fault tolerancethat dependonly on the systemdesign,
andnotonits ervironment,would be preferable.

A fault scenariois a history of a systems interaction
with its environment,andwhich includesnot only the sys-
tem’s inputs and outputsbut also a descriptionof faults,
including which componentdailed, whenthey failed, and
how eachfailure is expectedto manifestitself in the fu-
ture. We supposethat a systems environmentdetermines

Inter national Workshop on Software Specificationand Design1989
(ACM SIGSOFT Engineering Notes,Volume 14, Number 3)

thelik elihoodof eachfault scenario.

If we cannow decide,for eachscenario,whetherthe
systemdesignwill fail, and at what time it fails, thenwe
can (in principle) calculatethe MTTF by averagingover
all the fault scenarios. This average,however, is usually
guite complicatedand involves mary approximationsand
assumptionaboutthe ervironment.

Insteadof calculatingMTTF, we will considerverifica-
tion of fault toleranceto be proof thata systemdesignwill
notfail for agivenfaultscenaricor somesetof faultscenar
ios. For example,onemightverify thatsystenfailuredoes
not happenn ary fault scenarian which at mostonefault
occurs. This meaningof “f ault tolerance"depend®only on
thesystemdesignandis independenof ervironmentafac-
tors.

2 Formal Specificationof Fault Tolerance
2.1 SpecifyingFaults

Beforedefining“f ault tolerance”,it is first necessaryo
define“fault”. Abstractly a systemor systemcomponents
faultywhenit nolongerperformsaccordingo its specifica-
tion.

Theliteratureof faulttolerancadentifiesvarious“spec-
ifications” for componentsfterthey have failed. Thesein-
clude Byzantine(a failed componenexhibits arbitrary be-
havior), fail-stop (a failed componenthalts andits failure
canbedetected)andothers.

2.2 Non-Interference

The simplestway to define“f ault tolerance”is corverse
to our previous definition of “fault”: a systemis fault tol-
erantif it performsaccordingto its specification. Thus, it
mustbehae asthoughit werenon-faulty, evenin the pres-
enceof faulty behavior of its components.

Denoteby N the setof fault scenarioasinderwhich no
faultsoccur Let C be a setof fault scenariosinderwhich
we desirefault tolerance;no loss of generalitywill result
if we requirethat N C C. Supposehat D is a system
designthat exhibits the behaior desired,andthat FT D is
afault-tolerantversionof D. Therearenow threemethods
by whichwe mayshaw that F'T' D is faulttolerantunderthe
givensetof fault scenarios("

1. We mayshaw thatthe behavior of D, underscenarios
N, isidenticalto thebehaior of FT'D underC'.

2. We may characterizehe behaior of D underN by
somespecification,S. Thenwe mayshav that F'T' D
implementsS underC.

3. We may show thatthe behaior of FT'D underN is
equialentto thebehaior of FT'D underC.

Thefirst of thesemethodsds usuallyimpractical.We would
needto constructwo separateersionsof onesystem.

The secondmethodis the oneusedin the SIFT project.
The specificationS describeghe correctbehaior both of
D andof FTD. We would thenrequiresimply that FT' D
behae correctly

The third methodcaptureghe notion of fault tolerance
asa comparisorof behaviors with andwithout occurrences
of faults.However, it doessowithoutreferringeitherto de-
signD ortoits specificationS. Therelevantaspect®f each
canbe derived from FTD alone. The behaior of FT D
underscenarioswvith no faults shouldbe equivalentto be-
havior of D underthe samescenariosTherefore thethird
methodhasa clearadvantageover the others:the property
of faulttolerancebecomeentirely a propertyof the beha-
ior of FT D, and doesnot involve extra correctnesgon-
straintsthat may be requiredby S. It is this third method
wewill proceedo develop.

Our statemenbf fault toleranceis now arelationon the
behaior of the systemunderdifferentsetsof fault scenar
ios. Let the possibleways a systemmay interactwith its
ervironmentbe called “events”. Sequencesf eventswill
becalled“histories”, anda historythatis possiblefor asys-
tem will be called a “trace” of that system. One way to
characterizea designis to give the setof its traces. This
is a simplification of the approachof CSP[2]. “Behavior”
will be definedby the sequencef eventsof atracethatare
visible to a systems users.

Simplefaulttolerances then:allowing certainfault sce-
nariosdoesnotchangehevisible aspect®f thesetof traces
of a fault-tolerantsystem.We may saythatthe occurrence
of faulteventsdoesnot interfere with a systems behavior.

2.2.1 Formal Definition

Let a systembe characterizedyy a tuple (E, F, T'), where
E isthesetof possibleevents,F' C E is thesetof possible
faultevents,andT is thesetof tracesof eventschoserfrom
E.

For ary eventsequencé: and setof eventsS, the no-
tation h 1T S will denotethe sequencealerived from h but
with all eventsnotin S removedandtheorderingof there-
maining eventsretained. For ary traceh, whatwascalled
“behavior” above will now be denotedby the sequencef
non-faultevents,h 1 F, whereF = (E — F) is thecomple-
mentof F with respecto E. Two setsof tracesexhibit the
samebehaior if, for ary tracein one,thereis atracein the
otherwhich hasthe samesequencef eventsin F'.

We characterizeeachfault scenarioas a sequenceof
events. Eachscenariois simply a history, whetheror not
it is a possiblehistoryfor a givensystem.

Wewill now formalizetheabove definitionof faulttoler
ancefor thesystemA = (E, F, T). Let C bethesetof fault
scenariogor which A is to befaulttolerant. The definition
saysthataddingfaultscenariosn C' will notenlagetheset
of behaviors. This is equivalentto the following statement
in our notation:

(FT1) VBeT,BeC — BtFeT
This saysthat from ary given possiblehistory thatis also
a fault scenarioin C, we can constructa secondpossible
history simply by removing all fault eventsfrom the first.
This definition of simplefault tolerancecanbe augmented
in variousways.

2.2.2 Example: File System

As anexample considera fault-toleranfile system.An ex-
ternaluseror otherclient of the file systeminteractswith
it throughoperationssuchas “read-file”, “write-file”, and
soon. Theseoperationsalongwith ary of their associated
parametersand return values,will be taken asthe events
from which systemhistoriesare constructed.Certainob-
senable behaiors, or traces,are expected,e.g., if a user
writes a file andthenreadsthe samefile, the contentsre-
turnedshouldbe the sameasthe contentswritten. Sothe
history hy = (write-file ‘contents’, read-file‘contents’)
shouldbe a trace,while the history hy = (write-file ‘con-
tents’,read-file‘'garbage’) where‘contents’and‘garbage’
aredifferent,shouldnot be.

Fault eventsin the hardware supportingthe file system
may make varioushizarrebehaiors possible For example,
if thesequencéiz = (write-file ‘contents’,fault, read-file
‘garbage’) is atrace thenthesystemmayappeamsthough
it hadactuallyexecutedtheillegal history h,. If, however,
the file systemis to be fault tolerantwith respectto fault
scenariogncluding ko, then our property (FT1) demands
thaths won't existif hy doesnt.

Why isn't property(FT1) equivalentto requiringthatthe
file systemwork correctly? In fact, (FT1) is wealker. Sup-
pose,for somereason that when eachfile is written, the
file systemaltersthe contentswith somearbitraryfunction
Mod; whenafile is read,the alteredcontentsarereturned.
Thetracesof this new file systemijf it is fault tolerant,will

include:
(write-file ‘contents’,read-fileMod(‘contents’))

(write-file ‘contents’,fault, read-fileMod(‘contents’))
and possiblymary others. Like our previous file system
thatdid notalterthe contentof files, this onesatisfieqFT1)
becausehe alterationsare madeto files regardlessof the
presencef afault. But, if we have specifieda file system
that doesnot modify the contentof files, this implementa-
tionis incorrecteventhoughit is faulttolerant.

2.3 Analogy with Multi-Le vel Security

Property(FT1)is oftencalleda“non-interference’prop-
erty. Non-interferencepropertieshave beenexplored and
usedextensiely in the contect of multi-level computerse-
curity (MLS) [3] [5] [6] [8]. It is reasonablé¢o ask,then,
whatis therelationbetweerfault toleranceandmulti-level
security?We begin with a brief descriptionof MLS.

In a securecomputersystem,it is desirableto prevent
sensitve informationfrom flowing to userswho arenot au-
thorizedaccesdo it. In military systemsthe sensitvity
of information and the authorizationof userscan both be
labeledby a partially-orderedset of levels. Highly sensi-
tive informationis broughtinto the systemby the inputsof
systemuserswho have high levels of authorization. The
multi-level securityproblemis the preventionof informa-
tion transferfrom thosehigh-level inputsto outputsthatcan
beseenby userswho arenot sohighly authorized.

Thekey to definingsecurityin this way is the definition
of “information flow”. We supposéhatthe systemstraces
areknown. Onedefinition of informationflow is thenthe
ability of a particularuserto usethe obsened behaior of
the system,plus knowledgeof its traces,to make deduc-
tionsaboutits unseerbehaior. Informationwill flow from
unseerinputsto obseredbehaior if morecanbe deduced
aboutthoseinputs than could be deducedif the systems
behaior werenotobsened.

Non-interferencecan be taken (loosely) to meanthat
high-level inputsdo notinterferewith or influenceprocess-
ing, andhenceoutputs,on lower levels. Statedmore pre-
cisely, the existenceof high-level inputscannotbe deduced
from observinga particularhistoryof lower-level inputsand
outputs.

An analogybetweenfault toleranceand multi-level se-
curity propertiescan now be dravn. A non-interference
propertyfor multi-level securitycanbe corvertedto anon-
interferencepropertyfor faulttoleranceby translatingirom
“highly sensitve” inputsto “fault events”, andfrom “less
sensitve inputsandoutputs”to “non-faultevents”,i.e., or-
dinary systembehavior. A fault eventis thus considered
a type of input, althoughnot from ary user The non-
interferencepropertyfor MLS canthen be translatednto
thelanguageof faulttolerancetheexistenceof faultevents
cannotbededucedrom particularhistoriesof ordinarysys-
tembehaior. Thisis theproperty(FT1).

Theanalogycanbe posedn anothemway if we consider
thework of Biba[1] in extendingMLS to handlesomeas-
pectsof informationintegrity. His work addedntegrity lev-
elsto the securitylevels alreadyusedfor markingthe sen-
sitivity of informationandthe authorization®f users.The
Bibaintegrity propertyin effect, allows informationto flow
only from inputsto outputsof the sameor lower integrity
level. Given this property high-integrity userswould be

prohibitedfrom deducing(andhencefrom beingcorrupted
by) informationaboutinputsat lower integrity levels. The
analogybetweenfault toleranceand MLS canbe recastin
termsof integrity, in which casea fault eventis seento be
analogougo aninput of low integrity level. This becomes
an appropriateanalogyif we considerthat fault eventsare
notusuallya high-integrity sourceof information.

The analogy we have constructed, between fault-
tolerancepropertieson one hand and multi-level security
propertieson the other, is not perfectand breaksdown in
severalways:

e Unlike the inputs from users,which are the ultimate
sourceof informationin MLS systemsfaulteventsare
usuallynot externalandnot obsenable.

e Systemsrenever, in practice tolerantto all fault sce-
narios:somepossiblesequencef faultswill causehe
systemto fail. This differsfrom the analogousnulti-
level securitycase,in which onedesiresto build sys-
temsthataresecuraunderall possiblehistoriesof sen-
sitive inputs. Usersof an insecuresystemmay con-
spireto transmitinformationby concoctingunusuabr
unlikely sequencesf inputs;fault eventsareassumed
notto dothis.

Becausdfault-tolerancenon-interferencepropertiesand
MLS non-interferenceropertiesare formally similar, can
the samekinds of implementatiormechanism$e usedfor
both? The differencedisted above indicate why this will
notwork. Faultsarenot externalevents,andthereforeit is
notpossiblefor asystemto decide withoutfurtherprocess-
ing, whetherthey arefault eventsor not. A fault-detection
mechanisrmaybeneededIn securesystemshowever, in-
putsareassociateavith the authorizatiornlevel of the user
who causeghem. The differencein brief: faultsdon't log
in! Thus,eventhoughthereis a formal similarity between
faulttoleranceandMLS propertiesthe designausedto im-
plementthemwill bedifferent.

While fault toleranceand MLS needdifferent designs
andimplementationsthe methodsusedto verify animple-
mentationeitherfault tolerantor secureshouldbe similar.
Seesection3.

2.4 Graceful Degradation

The problemof specifyinggracefuldegradatiorof a sys-
tem’s servicein responséo faultswill have muchin com-
mon with the previous discussionof specifyingfault tol-
erance. We expectthat mary systemswill be fault toler-
antfor somefault scenariosgracefullydegradefor others,
andbe chaoticfor the rest. As a result, specificationgor
gracefuldegradationmay be merely modificationsor gen-
eralizationsvhichwealenthosewe have alreadydiscussed

for purefault tolerance.In fact, the specificationsve will
arrive atin this sectioncanbe seensimply asa morecom-
prehensie way to definefaulttolerancatself.

2.4.1 Limited Interfer ence

If fault toleranceis to be expressedas a non-interference
property asdiscussedn section2.2, thengracefuldegra-
dation may be expressibleas somelimited interferenceof
faultswith externalbehavior. A specificatiorof limited in-
terferenceshouldbe a generalizatiorof a specificationfor
non-interference.The form of the specificationmustthen
shav theway in whichinterferenceof faulteventswith nor-
mal behavior is limited.

When we developedproperty (FT1), we requiredthat
systembehaior with andwithout faultsbe identical This
preventsan obsener from deducingthat any faults have
occurred. Unlike the MLS case,though,it may not be a
problemthatonecandeduceheexistenceof faults,solong
asthe systembehavior in responseo thosefaultsis “good
enough”.Thus,we neednotdemandhatbehaiorsbeiden-
tical, but only thatthey be acceptablyequivalent If « and
3 arebehaiors (sequencem which no fault eventsoccur)
thenlet o = 8 meanthatthe two behaiors areacceptably
similar. Therelation’=’, calledthetolerancerelation, will
beanequialencerelationonbehaiors.

Adding fault scenariogo a systemsatisfying(FT1) will
not enlage the setof behaiors. We now want a second
property (FT2), suchthat addingfault scenarioswill not
enlagethesetof possibleequivalenceclasse®f behaiors,
wherea “possibleequivalenceclass”is onethatcontainsat
leastone possiblebehavior. Repeatinghe analysisthatled
to (FT1) but demandingnly equivalentinsteadof identical
behaior, we find that

VBET,Be€C —
I ETA1F=()andy=p1F

(FT2)

is the generalizedault toleranceor gracefuldegradation,
propertythatresults. This propertysays:for ary fault sce-
nario, we mustbe ableto find an alternatepossiblehistory
thatis fault-freeandis acceptablyequialent. If, for some
reasonan obsener of the systemcould not distinguishthe
behaior from 81 F, then justasfor (FT1), theexistence
of faultscouldnotbededuced.

As anexample considera systenmthatmustperformtwo
tasks,A and B. Supposehat fail-stopprocessorsd; and
A, arededicatedo simultaneousxecutionof task 4, while
fail-stopprocessord3; and B, arededicatedo taskB. Ig-
noring the amountsof time neededor processorso com-
parefinal results this systemwill be perfectlyfaulttolerant
(FT1) for afault scenarioin which processorsd; and B;
fail: bothtaskswill complete andthey will completein the
sameamountof time they would have takenif nofaultshad

occurred. However, it will not be fault tolerantfor a fault
scenarian which processor, fails in additionto 4; and
B;. In this case,processingf task A is interrupted,and
will not be completedunlessthe systemusesprocessot3,
to finishtask A, andeventhentask A will notbefinishedin
the sameamountof time asin afault-freescenario.

For this example,we would like “graceful degradation”
to meanthatfor ary fault scenarian which threeor fewer
processorgail, both tasks A and B will eventually com-
plete. To implementthis specificatiorwill requirethe sys-
temto reconfigurein somefault scenariosinterruptedpro-
cessingof task A will needto becontinuedor restartecbna
processooriginally dedicatedo task B, or vice versa.The
processingpower of the systemwill thenbe degraded be-
causea single processowill take longerto completeboth
tasksthan either one separatelybut the responseo faults
will begracefulbecauseatleastbothtaskswill befinished.
To describethis type of graceful degradation,we would
choosea tolerancerelation that ignorestiming: two his-
toriesare equivalentif they involve the samesequencef
events,but at possiblydifferenttimes.

Notethat(FT2) reduceso (FT1) in the casethatthetol-
eranceelationis equality It is thechoiceof toleranceela-
tion thatdetermineshow faultsinterferewith behaior, and
thereforethe meaningof “graceful degradation”. As one
choosesdargersetsof fault scenarios(, thetolerancerela-
tion mustbe choserto treatmorebehaviors asequialent.

This form of limited interferencecanbeviewedin terms
of theanalogywith multi-level security Systemdhatmeet
(FT2)but not(FT1)areanalogouso systemghatleaksome
informationfrom high securitylevelsto lowerones,andare
thusnot perfectlysecure.

3 Verification of Fault Tolerance

We have arguedthat non-interferencapecificationcan

be usedto capturethe intuitive notion of fault tolerance.

How canasystenbeverified,in practice to implementhis
sortof specification?

Oncethe constructof “event” and“trace” arerelatedto
featuresof the implementation,one might appealdirectly
to the definitionin constructinga proof. However, for all
but the simplestsystem this approactbecomesrery com-
plicated.

Many of existing verificationtools [7][4] provide little
helpeither Typically, thesetoolsaredesignedor proof of
invariants,or moregenerally of embeddedssertionscon-
ditionsthathold ataparticularpointin anexecutionhistory.
Unfortunatelyanembedde@ssertiorexpressea condition
that appliesto eachhistory independentlywhereasa non-
interferencespecificationappliesto the entire setof possi-
ble historiesatonce.Thehelpprovidedby theseoolsis not
sufiicient.

Becausdault-tolerancespecificationareformally simi-
lar to specificationgor multi-level security this sameprob-
lem arisesin the verificationof MLS. In thatdomain,spe-
cializedtechniqguesanbe appliedto analyzespecialcases.
For example,the techniqueof [10] is onein which the ex-
istenceof sometracesis shavn by modifying othertraces
in appropriateways. Demonstratinghe existenceof one
trace,givenanothertrace,is exactly whatis neededn both
(FT1) and(FT2), andthis techniqueis in factonethatcan
be appliedeitherto designsin the MLS or fault-tolerance
domains.

References

[1] K. Biba. Integrity consideration$or securecomputersys-
tems.TechnicaReportMTR-3153,MITRE Corp.,Bedford,
MA, Apr. 1977.

[2] S.Brookes,C.Hoare,andA. Roscoe.A theoryof commu-
nicatingsequentiaprocessesl. ACM, 31(3),1984.

[3] J. GoguenandJ. Meseguer Security policy and security
models.In IEEE Symp Securityand Privacy, 1982.

[4] D. Goodetal. Reporton the Gypsylanguageyersion2.0.
TechnicalReport ICSCA-CMP-10, Institute of Computer
Sciencelniv. of Texas,Austin, Sept.1978.

[5] J.Haighetal. An experienceusingtwo covertchanneknal-
ysistechnique®on a real systemdesign.In IEEE Symp Se-
curity andPrivacy, 1986.

[6] D. McCullough. Specificationgor multi-level securityand
a hook-upproperty In IEEE Symp.Securityand Privacy,
1987.

[7] B. Silverbeg etal. The HDM handbookyolumeii. Tech-
nical ReportDeliverable AO06, project 4828, SRI, Menlo
Park, CA, Junel979.

[8] S.T. Vinter, D. Weber etal. A securedistributedoperating
system.In IEEE Symp Securityand Privacy, 1988.

[9] D.Weber Specificationdor fault tolerance.TechnicalRe-
port19-3,0RA Corp.,Jan.1988.

[10] D. WeberandB. Lubarsly. The SDOS project— verify-
ing hook-upsecurity In Comp.SecurityApplicationsConf,
pages’—15,1987.

[11] J. Wenslg et al. SIFT: Design and analysisof a fault-
tolerantcomputerfor aircraft control. Proc. IEEE, 66(10),
Oct.1978.

