Middlewar e Policiesfor Intrusion Tolerance:
A Position Statementfor WDMS '02

Franklin Webber ParthaPal, ChrisJonesMichael Atighetchi, Paul Rubel
BBN Technologies

For mary years,researcherbave arguedthat redun-
dang canbe usedto recover from computersystemfail-
ures,notonly thosefailuresthatarisefrom random“acts of
God” but thosecausedby maliciousand orchestratedcts
of Man aswell[2]. Somemiddlevarehasbeenbuilt to co-
ordinategroupsof componenteplicasin away thattoler-
atesarbitraryfailuresof a subsebf thereplicas[g[4]; then
if an attacler corruptsonly one of thesesubsetsthe sys-
temwill continuefunctioningcorrectly Ongoingresearch
seekdo refinethis approacho intrusion tolerance, includ-
ing building the next generatiorof dependableniddlevare
to supportit[5][1].

Our positionis that successfulntrusion tolerancewill
dependnapolicy thatlinks replicacoordinatiorwith other
intrusioncountermeasuresdthatthis policy shouldbeim-
plementedn middleware. Replicacoordinationby itself is
notsufficientbecause:

e Attackerswill try, andoftensucceedin corruptingor
killing morereplicasthancanbe tolerated. A policy
for replacingcorruptor deadreplicasautomaticallyis
thereforeneededo increaseahe systems usefullife.

o Attackerswill try to kill mary replicasat once,or cor-
ruptreplicassothateachbeharesnormallyatfirst, then
mary fail simultaneously A policy that usesother
mechanismsintrusion detectorsand firewalls in par
ticular, to quarantinethe attacler is thereforeneeded
to make this andotherattacksharder

The intrusion tolerancepolicy belongsin middlewvare be-
cause

e itislikely to bereusabldor mary differentdistributed
applicationsand

¢ it involvesadaptatiorandreconfiguratiorthatneedgo
be coordinatedacrossmultiple hosts.

Intrusion tolerancepolicies involve a trade-of: a sys-
temthatis quickto replacereplicasandto quarantinenosts
where suspiciousevents have happeneds a systemthat
may malke itself especiallyvulnerableto denial-of-service

attacks.An attacler who learnsto trigger quarantiningfor
example,may be ableto quarantineso mary hoststhatthe
systemfails to provide enoughresourcesven for autho-
rizedapplications.Onthe otherhand,a systenthatis slow
to reactmay betoo slow to countermary attacks.

We have definedseveralintrusiontolerancepoliciesand
implementedthem using the QuO adaptie middleware
toolkit[3]. One of thesepoliciesis currently being evalu-
atedin an adwersarial“‘Red Team” experiment. Sectionl
describeghatpolicy. Section2 summarizesheresultof a
RedTeamexperimentinvolving middlewvareimplementing
thatpolicy. Finally, section3 lists someunansweredjues-
tionsthatmayleadto furtherdiscussiorat the Workshop.

1 An Example Policy for Intrusion Tolerance

This section describesa policy for defendinga dis-
tributed applicationagainstintrusions. The policy coordi-
nateshefollowing mechanisms:

e replica management supportfor detectingreplica
crashesandstartingnew replicas;

e packetfiltering : firewalls,oneperhost,thatallow net-
work traffic to be blocked accordingto rulesthatcan
be establisheé&ndchangedat run-time;

e intrusion detection detectorson every hostthatlook
for suspiciousietwork traffic andimproperfile system
actiity;

e accesscontrol: cryptographicsupportfor detecting
andrejectingunauthorizednodificationto application
executablesandto application-and middleware-leel
communication.

Thepolicy hasthefollowing clauses:
1. Useaccesgontrolto ensurghateveryreplicagetsrun

from a legitimate executableand that all application
andmiddlevarecommunications valid.

Workshop on DependableMiddlewar e Systems2002
(part of DependableSystemsand Networks Conference)

2. Maintaintwo replicasof every applicationcomponent,
startinganew onewheneernecessanandcoordinate
the replicasto toleratea crashof eitherreplicaor a
network partitionthatmakesonereplicainaccessible.

3. If improperfile systemactiity is detectecbn hostH,
mark H as“suspect”.If shuttingH down would leave
atleasthalf of theoriginal setof hostsup, thenshutH
down andblock all network traffic to andfrom H.

4. If suspiciousnetwork traffic is detectedrom host H,
mark H as “suspect”. If H is not a hoston which
applicationcomponentganbe run, block all network
traffic from H; otherwise,if shutting H down would
leave at leasthalf of the original setof hostsup, then
shutH down andblock all network traffic to andfrom
H.

5. Whenstartinga new replica,placeit, if possible,ona
hostthatis not “suspect”.

This intrusiontolerancepolicy is completelyautomatic:
therespons¢o anattackis completelycoordinatedy mid-
dleware,without ary humanintervention. Automatingthe
policy meanghatevenavery fastattackmayfaceaneffec-
tive response Slower attackswould allow time for human
intervention, possiblyresultingin a betterintrusion toler-
ance but suchinterventionis not partof thepolicy.

Threeissuesaboutthis policy mustbe noted:

1. Arbitrary, i.e., Byzantine,corruption of replicascan
causeanapplicationto fail. This policy maintainstoo
few replicasto toleratean arbitrary failure of one of
them,andthe replicacoordinationdescribedn policy
clause2 toleratesonly crashfailures.However, thein-
tentof policy clausel is to malke it difficult for even
a privileged attacler to corrupta replica. Tolerating
only crashfailuresis adequatetherefore,to counter
mostattacks.

We planto useByzantinefault-toleraniprotocols[] in
thefuture,andtheintrusiontolerancepolicy will need
to bemodifiedaccordingly

2. Quarantiningahost,in policy clauses8 and4, involves
both shuttingthathostdown andrefusingto talk to it.
Simply shuttingit down may not be sufiicientbecause
aprivilegedattacler onthathostmaydisablethe shut-
down mechanisnbeforeit canbe activated.

3. The middleware must synchronizethe shutdavn of
“suspect” hostsso that no more than half the hosts
will be shutdown unlessthe attacler hasactuallyin-
filtrated morethanhalf of them(in which casethe at-
tacker could shutthemdown himself). Policy clause4
allows for the possibilitythatthe attacler might setoff

intrusiondetectorson mary or all of the hostssimul-
taneouslywithout having gainedprivilegeson all the
hosts.In thatcase the middlevaremustchoosewhich
“suspect’hoststo shutdown andwhich to keep,and
this choicemustbe consistenacrosghe network. The
constraintthat no more than half the hostsshouldbe
shutdown is anarbitrarylimit (e.g.,onethird or two
thirds might be choseninstead)that preventsthe mid-
dlewaredefensed$rom causinga denialof service.

We haveimplementedhis policy in CORBA-basedmid-
dleware, entirely in Java. Our implementationruns on
Linux anduseslPTablesfor pacletfiltering and Snortand
Tripwire as intrusion detectors. Our accesscontrol and
replicamanagemenare home-gravn, but the former uses
thecryptographidibrariesavailablein Sun's Jasa Cryptog-
raphyExtension(JCE).

2 ResultsFrom A Red TeamExperiment

An experimenthasbeenconductedo testthe effective-
nessof our implementationof the policy describedn the
previous section.This experimentconsistedf repeatedat-
tacksagainstour software by a professionalRed Team”
from SandiaNational Laboratory This sectiondescribes
theresultof thatexperiment.

As a context for the experimentwe implementeda sim-
ple video displayapplication,in which senersfeedimage
datato clients, andclients periodically selectan appropri-
atesener usingan intermediate‘broker” component.The
applicationis distributed over a network of 13 hostson 4
separat@ ANs. It is implementecentirelyin Javaanduses
CORBA.

We defendedhis applicationusingtheintrusion-tolerant
middleware previously described.The goal of the defense
was to ensurethat at leastone client continueto receie
videoimagesfrom somesener for aslong aspossible.To
concentrat¢heattacler'sattentionon ourdefensesye pro-
tectedonly the broker componentand put the clientsand
senersoff-limits for theattacler. (Clientsandsenersmight
alsohave beenprotectedby our middleware,or they might
be fixed resourcesprotectedby someothermeans.) Thus
thebrokerwasreplicated andbrokerreplicasmight be cre-
atedanywhereon the network. The goal of the attackwas
to disablethe broker componentthuspreventingary client
from locatingary sener andthuspreventingthe receiptof
videoimages.

The RedTeamwasgiven“root” privilegeononehoston
one of the 4 LANs. The Red Teamthen spentroughly a
weekof effort repeatedlyattackingthe systembeforefind-
ing a way to defeatour defense. That attackmethodwas
thenautomatedThecompletelyautomatedttacktakesap-
proximately5 minutesto defeatour defenseandimmedi-
ately setsoff numerousalarms.

We considetthis experimentresultasucces$or our mid-
dlewaredefenselt shavs:

e An unpreparedattacler, even with a lot of skill and
some'insider” privilege,would beforcedto spendsig-
nificanteffort to find a successfuéittack.

e A preparedattacler with some “insider” privilege
would likely be forcedto spendminutes,ratherthan
secondsto disableanapplication.

The successfulattack combined three separatetech-
niguesto defeatour defense:

1. ARP cachepoisoningon the LAN on which the at-
tacker hasprivilege,to createanartificial network par
tition andisolatereplicasonthatLAN;

2. spoofedport scansthat seeminglycome from hosts
on the otherLANSs, causingour defenseo shutdown
somehostsonwhich replicasrun;

3. TCP connectionfloodingto block the mechanisnfor
startingnew replicas.

Sothe successfubttackdisabledthe broker componenby
isolating somereplicas,causingthe defenseto kill others,
andpreventingnew onesfrom beingstarted.

A follow-on experimentis being prepared. This sec-
ondexperimentwill testimproveddefenseshatwould have
blockedthe attackthatsucceedeéh thefirst experiment.It
will also exercisesometechniqueghe Red Teamdid not
explorein thefirst experiment.In particular the RedTeam
will try to causamaliciouscorruptionin atleastonereplica,
thuscircumwentingclausel of our policy, andwewill mea-
surethedifficulty of doingthis.

3 Middleware Issues

Onekey issuethatremainsunresolhedin ourwork is the
value of unpredictabilityfor defense.Doesa defensethat
choosesinpredictabl\betweeralternatve countermeasures
to an attackmake the attacler work significantly harder?
For example,the policy in section1 might startnew repli-
cason randomly-chosemvailable hostsor it might always
choosethe availablehostwith the smallestlP address.In-
tuitively it seemshe attacler mustwork at leastashardto
defeattheunpredictablalefensebut is theincreasen diffi-
culty significantin practice?

Thisissuecanbedirectly relatedto middlewarebecause
distributedmiddleware canbe a sourceof unpredictability
itself. Nondeterminismin a distributed computationcan
lead to unpredictablechoicesbetweenalternatves. Can
this nondeterminisnibe harnessetb improveintrusiontol-
erance?

A second,relatedissueis diversity, Our approachto
intrusion tolerancedependson diversity to work: without
diversity, if all replicasrun the samecode, run on iden-
tical platforms,andrun in ervironmentsthat are adminis-
teredidentically, thenanattackthatkills onereplicashould
work to kill themall at once. With diversity, multiple im-
plementationsmultiple platforms,andheterogeneoustvi-
ronmentsshouldincreasentrusiontolerance.

Clearly, middlewareis animportantway to managedi-
versity, allowing anapplicationto be givena consistentn-
trusiontolerancepolicy that spananultiple, heterogeneous
platforms. But how muchdiversity is necessaryor intru-
siontoleranceanddoestheneedfor morediversityaddany
new middlevarerequirements?

A third issueis packagingintrusion tolerancepolicies,
suchasthe onein sectionl, for reuseacrossdifferentap-
plications. Clearly, encapsulatinghe policy in middlewvare
helpsreuse. However, we have little experienceso far in
applyingthe samepolicy to radicallydifferentapplications.
Canthe policy be easilyparameterizedby relevantfactors
such as the numberand kind of hosts, and the network
topology?

A fourth issuesofar unaddressetly our work is there-
lationshipbetweenreal-time constraintsand intrusion tol-
erance. The addition of real-timeconstraintanay make a
distributedcomputatiormorefragile andthuseasierfor an
attacler to disrupt. On the other hand, small disruptions
that resultfrom an intrusion may be more easily detected
in a real-time systemand thus may be counteredsooner
Whetherreal-timeapplicationsareharderor easierto make
intrusion-tolerants anopenquestion.

References

[1] Intrusion tolerance by unpredictable adaptation.
http://itua.bbn.com. BBN Technologiesand University
of lllinois.

[2] L. Lamport,R. ShostakandM. Pease.The Byzantinegen-
eralsproblem. ACM Trans. Prog. Lang. Syst., 4(3):382—-401,
1982.

[3] J.Loyall, R. SchantzJ. Zinky, andD. Bakken. Specifying
andmeasuringjuality of servicein distributedobjectsystems.
In |IEEE Int’l Symp. Object-Oriented Real-Time Distributed
Comp., Apr. 1998.Kyoto, Japan.

[4] L. E.Moseretal. TheEternalsystem.ln ACM Conf. Object-
Oriented Prog., Syst., Lang., and Applications, Oct. 1997.

[5] D. Pawell etal. MAFTIA (malicious-and accidental-ault
toleranceor internetapplications.In Int'| Conf. Dependable
Syst. and Networks, July 2001.

[6] M. K. Reiter Distributing trust with the Ramparttoolkit.
Commun. ACM, 39(4):71-74Apr. 1996.

