
Defense-Enabled Applications

Franklin Webber, Partha P. Pal, Richard E. Schantz and Joseph P. Loyall
BBN Technologies
10 Moulton Street

Cambridge, MA 02138
{fwebber, ppal, rschantz, jloyall}@bbn.com

Abstract

DARPA Information Survivability Conference and Exposition II (DISCEX 2001)

Some applications can be given increased resistance
to malicious attack even though the environment in which
they run is untrustworthy. We call any such application
“defense-enabled”. This paper explains the principles be-
hind defense enabling and the assumptions on which it de-
pends.

1 Introduction

Ideally, one defends a computer system against mali-
cious attack by identifying, in a security policy, what one
wants to protect and then by implementing that protection
in hardware and software. The implementation is called a
trusted computing base (TCB) [12]. The TCB is trusted not
to violate the security policy itself1, and, in most systems, it
is also trusted to prevent other, possibly malicious, software
from violating the policy. In a distributed system, the TCB
usually includes key parts of the operating systems that run
on network hosts and of the network communication paths
between these hosts.

In practice, many computer systems today have no such
trusted computing base. Many others have a design for a
TCB but its implementation is seriously flawed. There are
several reasons for this situation:

• It is hard to keep the TCB for a complicated system
simple enough to warrant trust.

• It is hard to modify the TCB while maintaining trust,
because even simple changes to the TCB can have un-
foreseen effects that undermine its protection.

• It is hard to redesign an existing system to create a
TCB if none was planned for originally.

1Technically speaking, the TCB is trusted to violate the security policy
so long as the effect of that violation is not equivalent to allowing non-TCB
software to violate the policy.

In fact, many of the world’s computer systems today run op-
erating systems and networking software that are far from
the TCB ideal. These systems may lack any security pol-
icy, can be damaged using well-known attacks, and there-
fore cannot be trusted to protect anything. These systems
will continue to be used because of the many applications
that depend on them, but are unlikely to be redesigned to be
more trustworthy.

Given this situation, one might ask: “What kind of de-
fense is possible for systems that can be accessed by mali-
cious attackers but lack trustworthy operating systems and
networking to protect them?”

In principle, the answer is “None.” A determined attacker
can, with sufficient work, defeat whatever flawed protec-
tion is offered by the operating systems or networking, thus
gaining privileges that can be used either to kill the sys-
tem completely or to corrupt it some other way. Although
one might try to protect data using encryption and digital
signatures that are computationally infeasible to break [10],
when that data is processed by the system it will almost cer-
tainly become vulnerable to an attacker with enough privi-
lege. Note that encrypted data is worthless unless it is de-
crypted at some time, and it can be read at that time by a
privileged attacker; also note that digitally signed data must
be re-signed when it is modified, and an attacker who gains
the privilege to re-sign data can forge new, corrupt data as
well.

In practice, though, an attacker may not have the skill,
perseverance, preparation, or time needed to carry out the
attacks that are possible in the worst case. Some attackers
rely on prepackaged attack “scripts” and do not have the
skill to repair the scripts if they fail. An attacker who meets
unexpected obstacles may look elsewhere for easier targets
rather than persevere in an attack. An attacker who is not
prepared in advance to circumvent the protection in a spe-
cific system will be more likely to trigger intrusion detection
alarms [4]. In any case, the more time an attacker takes, the
more vulnerable he is to being detected and stopped by sys-
tem administrators.



In summary, system protection is not perfect, but attacks
and attackers aren’t either.

This paper makes a distinction betweenprotection,
which seeks to prevent the attacker from gaining privileges,
and defense, which includes protection but also seeks to
frustrate an attacker in case protection fails and the attacker
gains some privileges anyway. Protection mechanisms are
static and proactive; defense mechanisms enhance the pro-
tection mechanisms with a dynamic strategy for reacting to
a partially successful attack. Both protection and defense
aim to keep a system functioning, but protection tends to
be all-or-nothing, either it works or it doesn’t, whereas de-
fense can choose from among a range of responses, some
more appropriate and cost-effective than others.

2 Defending Critical Applications

The goal of defense is the correct functioning of one or
more critical applications. These applications are critical
in the sense that the functions they implement are the main
purpose of the computer system on which they run. De-
fending other applications in the same environment is not
a primary goal. Neither is defending the application’s en-
vironment itself, e.g., the operating systems and networks
that support the critical applications. Defending the envi-
ronment is important only so far as it helps to defend the
critical applications themselves.

We say that an application that does not function cor-
rectly is corrupt. A corrupt application might deliver bad
service or it might fail to deliver service at all. The goal of
defense, then, is to prevent or significantly delay corruption
of critical applications.

An application can become corrupt due to various
causes:

• either because of an accident, such as a hardware fail-
ure, or because of malice;

• either because flaws in its environment cause a loss
of protection that allows it to be damaged or because
flaws in its own implementation cause it to misbehave.

The main concern of this paper is corruption that results
from a malicious attack exploiting flaws in an application’s
environment. We assume that this is by far the most likely
cause of corruption and so the other causes will be neglected
in this paper. This assumption is reasonable because:

• Malicious attacks, which are directed and intentional,
are far more effective in corrupting an application than
accidents, which happen randomly.

• Flaws in the application’s implementation can be cor-
rected more easily than flaws in the application’s envi-
ronment, and the latter are likely to be better known to
attackers and exploited by them.

Note that we are assuming we can modify or extend the
design and implementation of the critical applications. This
is in sharp contrast with the design and implementation of
the environment, which we assume is almost completely be-
yond our control. In other words, we must live with flaws in
the environment but, because our goal is defending critical
applications, we will expend the effort to make those appli-
cations much more trustworthy than the operating systems
and networks on which they depend.

We say that an application isdefense-enabledif mech-
anisms are in place to cause most attackers to take signifi-
cantly longer to corrupt it than would be necessary without
the mechanisms. In other words, an attacker must not only
defeat protection mechanisms in the environment, he must
spend additional time defeating defense mechanisms added
to the application.

The central factor in both attack and defense isprivi-
lege. An attack succeeds when the attacker gains privileges
that allow him to corrupt some critical application. Defense
enabling, therefore, must succeed either by keeping the at-
tacker from gaining such privileges or by keeping him from
using those privileges effectively. Defense enabling, there-
fore, can be divided into two complementary goals:

1. The attacker’s acquisition of privileges must be slowed
down. How this can be done is the topic of section 3.

2. The defense must respond and adapt to the privileged
attacker’s abuse of resources. Mechanisms for doing
this are the topic of section 4.

Both goals are important. The first one makes the protec-
tion in the application’s environment last longer. The sec-
ond one makes the attacker work harder to use newly-gained
privileges to corrupt a critical application. Because we have
assumed that a determined attacker cannot be delayed in-
definitely, both goals are needed for defense.

Defense enabling is organized around the application to
be defended rather than around the operating systems and
networks that support it. This follows simply because the
application can be modified whereas the environment, for
the most part, cannot. Section 4 explains that many de-
fense mechanisms will tend to be placed into middleware
[1], which is not part of the environment (in the traditional
sense we have defined it here) but is still separate from the
application’s functionality. This separation keeps the de-
fense mechanisms from complicating each application’s de-
sign and allows for easy reuse in multiple applications.

3 Slowing the Acquisition of Privilege

Defense enabling depends on slowing the spread of priv-
ilege to attackers. To see this, note that if privileges could be
gotten instantly, the attacker could immediately grab all the



privileges needed to stop all application processing and thus
to deny all service. No defense would be possible against
this unlimited attack.

To help slow the spread of privilege, we divide the sys-
tem into severalsecurity domains, each with its own set of
privileges. The intent is to force the attacker to take more
time accumulating the privileges needed to corrupt the ap-
plications. This will be true if:

• Each critical application has parts that are intelligently
distributed across many domains so that privilege in
a set of several domains is needed to corrupt it. This
distribution of parts will be discussed in section 4.

• The attacker cannot accumulate privileges concur-
rently in any such set of domains. This constraint will
be discussed later in this section.

A security domain may be a network host, a LAN con-
sisting of several hosts, a router, or some other structure.
The domains are chosen and configured to make best use of
the existing protection in the environment to limit the spread
of privilege. The domains must not overlap; for example, if
the domains are sets of hosts then each host is in exactly one
domain.

Each security domain may offer many different kinds of
privilege. The following hierarchy is a minimal set that is
typical in many domains:

• anonymous user privilege: allows interaction with
servers in a security domain only via network proto-
cols such as HTTP that do not require the client to be
identified;

• domain user privilege: allows access only to a well-
defined set of data and processes in one particular se-
curity domain (e.g., the user must “log in” to get this
access);

• domain administrator privilege : allows reading and
writing of any data and starting and stopping any pro-
cessing in one particular security domain (e.g., “root”
privilege on Unix hosts).

This hierarchy is listed in order of increasing privilege.
Each of these privileges subsumes all the previous ones.

To increase the protection of critical applications we cre-
ate a new kind of privilege in each domain:

• application-level privilege: allows interaction with
a defense-enabled application using application-level
protocols (e.g. CORBA calls that query the applica-
tion or issue commands).

An attacker with application-level privilege would find it
easy to control, and thus corrupt, an application, so defense

enabling must make it hard for an attacker to get this privi-
lege.

Application-level privilege is a key part of defense en-
abling. It differs from other kinds of privilege in that (a) it
is not part of the environment but is created specifically to
defend an application (b) it uses cryptographic techniques
(which will be described later) (c) it does not subsume any
of the other kinds of privilege and it is not not subsumed
by any of them. In particular, gaining domain administra-
tor (“root”) privilege does not guarantee application-level
privilege; this will be explained shortly.

A malicious intruder will attack a critical application by
collecting the privileges needed to damage its integrity or to
stop it from providing service. Using the set of privileges
just listed, there are three ways for an attacker to gain new
privileges:

1. by converting domain or anonymous user privilege
into domain administrator privilege (e.g., exploiting
bugs in trusted services, such assendmail , that have
domain administrator privilege already);

2. by converting domain administrator privilege in one
domain into domain administrator privilege in another
(e.g., using “root” in one domain to log in as “root” in
another);

3. by converting domain administrator privilege into
application-level privilege (e.g., using “root” privilege
to invoke unauthorized application commands).

The attacker must be slowed down or prevented from gain-
ing new privileges in each of these ways. How to do this
will depend on the nature of the domains and therefore no
generally-applicable rules can be given. However, the com-
mon case at issue today is security domains that are sets
of network hosts. The following discussion applies to that
case.

First, the attacker will try to convert domain or anony-
mous user privilege into domain administrator privilege by
exploiting operating system security flaws. As explained in
section 1, we assume this will always be possible. We also
assume that it takes some time, possibly only a matter of
minutes, but it is not instantaneous. The time it takes can
be maximized by configuration of hosts and firewalls, for
example, by applying the latest operating system patches,
disabling or blocking unnecessary network protocols, and
making the password file unreadable.

Second, the attacker can be prevented by proper host
configuration from converting administrator privilege in one
domain into administrator privilege in another. For exam-
ple, hosts in different domains must not respect each other’s
privileges. This forces the attacker to start from scratch
when trying to gain privilege in each domain.



Once having become a domain administrator, the at-
tacker can quickly damage application processes in that do-
main simply by stopping them. With this privilege, he can
bypass the operating system access controls that would nor-
mally prevent this damage. This damage, though, is con-
tained because the application is distributed across many
security domains.

Third, a defense-enabled application must use crypto-
graphic techniques to prevent the attacker from gaining
application-level privilege. An attacker having this privi-
lege can do more damage than a domain administrator be-
cause direct attacks on the application cannot be confined to
a single security domain. With application-level privilege,
the attacker masquerades as part of the application itself,
bypassing its access controls and causing it to behave incor-
rectly by sending it bogus commands and data, which the
application itself propagates across the boundaries between
security domains. The following techniques are therefore
an essential part of every defense-enabled critical applica-
tion:

• no application process can be started without authenti-
cation, e.g., executables are stored on disk encrypted
with passwords known only to authorized users and
other application processes;

• all communication between application processes is
digitally signed with private keys known only to the
application itself and communication uses sequence
numbers to prevent replay.

Using these techniques will make it hard for an attacker,
even one with domain administrator privilege, to masquer-
ade as part of the application. Assuming the encryption is
unbreakable, the attacker will be unable to corrupt the ap-
plication process’ code on disk. Assuming the digital signa-
tures are unbreakable, the attacker will be unable to disrupt
communication.

In principle, a domain administrator can gain
application-level privilege with enough effort. For ex-
ample, the administrator can read the core image of a
running process, modify it to change the process’ behavior,
or search it to find the private keys used for digital signa-
tures. This attack could be made harder with techniques
for concealing or randomizing the location of data, e.g.,
passwords, within a core image, but the attack would still
be possible. To counter this attack directly, the application
must be made to confine application-level privilege, most
likely using “Byzantine” fault tolerance techniques [2]. In
practice, though, the effort needed for this kind of attack
is likely to be much greater than the effort needed simply
to kill all application processes in the domain, followed by
attacks on other domains.

Finally, the attacker must not be able to gather privileges
in many domains concurrently. This constraint means that

an attack on an application in many domains cannot go just
as fast as an attack on one domain.

An attack that proceeds sequentially, rather than concur-
rently, is called astagedattack; defense enabling relies on
the attacker using only staged attacks. We can either as-
sume that staged attacks are necessary or try to make them
so. As a practical matter, most attackers will gather privi-
leges sequentially as they explore a system’s infrastructure,
so staging may be a reasonable assumption. On the other
hand, some attacks can be automated and carried out many
times in parallel, in which case staging must be enforced.

One way to force an attacker to use a staged attack is by
restricting all network communication to be local, i.e., each
host can communicate only with its nearest neighbors and
any networking protocols that allow communication with
more distant hosts are disabled. As an example of how to
do this, assuming a network of hosts equipped with standard
Internet protocols [11]:

• Use a network infrastructure consisting of LANs con-
nected by hosts acting as routers.

• Disable IP forwarding in all host routing tables.

This prevents an attacker from directly gaining privilege on
an arbitrary host: he must first gain domain administrator
privilege on neighboring hosts, re-enable IP forwarding on
them, then attack neighbors of those hosts, etc. Thus some
steps in the attack are forced to be done in sequence, not in
parallel.

Unfortunately, disabling IP forwarding will not only im-
pede the attacker, it makes building a distributed application
harder. So, one must additionally create the effect of IP for-
warding within each application, rather than relying on an
infrastructure that implements Internet protocols:

• Replicate each application service on each host used
for routing and multicast every service request by re-
peating it to replicas on neighboring hosts.

Having the application do the forwarding of its own com-
munication also means that that communication is protected
from an attacker who does not have application-level privi-
lege.

This section has shown how defense enabling makes an
attacker take longer to collect privileges. The next section
shows how this extra time can be used for defense.

4 Competing for Control of Resources

The traditional approach to computer security treats the
attacker and defender asymmetrically: the defender has do-
main administrator privilege, the attacker does not. The de-
fender is given that privilege initially and uses that privilege
to set up static protection both for critical applications and



to maintain the asymmetry, i.e., the attacker must never get
domain administrator privilege for himself.

In contrast, defense enabling assumes the attacker will
eventually gain domain administrator privilege in some se-
curity domains, and in those domains the attacker and de-
fender will be in symmetrical positions. What then? Sec-
tion 3 showed how the defender can set up a new kind of
privilege at the application level and try to protect it us-
ing cryptography. But the defender can also use domain
administrator privilege to contest the attacker’s control of
domains. This section discusses mechanisms to use in that
competition for resources.

Defense enabling includes the following tasks:

• replicating: Creating multiple security domains is not
by itself sufficient to force the attacker to spend more
time collecting privileges: if some domain were a sin-
gle point of failure for the application, the attacker
would need only to gain domain administrator priv-
ilege in that domain and kill application processes
there. Clearly the application must be distributed re-
dundantly across the domains.

The simplest solution is to replicate every essential part
of the application and place the replicas in different do-
mains. Doing this turns the problem of defense into a
problem of fault tolerance, where a “fault” is the cor-
ruption of a single replica by the attacker. The replicas
must be coordinated to ensure that, as a group, they
will not be corrupted when the attacker succeeds in
corrupting some of them. Many protocols exist for
fault tolerant replica coordination [9].

Note that by creating and enforcing application-level
privilege we may be able to simplify the fault tol-
erance problem to be solved. If the attacker cannot
gain application-level privilege then application repli-
cas will, at worst, crash when corrupted, and so it will
not be necessary for the application to use more expen-
sive protocols that protect against “Byzantine” corrup-
tion [2]. On the other hand, if the attacker can gain
application-level privilege, such protocols are needed.

• monitoring : Intrusion detection systems (IDSs) [4]
will be a part of this task, to collect data at the infras-
tructure level about possible attacks. Data collected
at the application’s level is also desirable, though, be-
cause it can give a more comprehensive view of the na-
ture of the attack and more insight into potential reme-
dies, and because it is more relevant to the needs of the
application. Two kinds of monitoring are important at
the application level:

1. quality-of-service (QoS): whether the application
is getting the QoS it needs from its environment
and whether it is providing the QoS required by

its users. A decrease of either QoS measure is an
indication of a possible attack.

2. self-checking: whether the application continues
to satisfy invariants specified by its developers. A
violation of such invariants is an indication that
the application may be corrupt, possibly because
the attacker has gained application-level privi-
lege.

• counterattacking: If the source of an attack can be di-
agnosed with high confidence, resources can be denied
to the attacker, for example, by killing the attacker’s
processes, denying the attacker bandwidth, or blocking
communication from hosts running corrupt processes.

• adapting: If the attacker denies resources to a criti-
cal application, for example by killing application pro-
cesses or flooding communication channels, the appli-
cation must try to adapt to restore the QoS it needs.
There is a wide variety of possible adaptations. The
next section describes a classification scheme for de-
fensive adaptations and gives several examples.

4.1 Classifying Defensive Adaptation

An application’s defense will use one or more kinds of
adaptation to counter a particular attack. This section clas-
sifies, in several dimensions, a basic set of potential adapta-
tions.

In one dimension, shown vertically in table 1, adapta-
tions differ by the level of system architecture at which they
work. At the highest level, an application can choose to
change its own behavior in the face of an attack, either find-
ing an alternate way to proceed or degrading its service ex-
pectations. At the next lower level, the application can use
QoS management support to try to make its environment
offer the QoS it needs. At the lowest level, the application
uses services from the operating system and network level
to counter the attack, for example by changing details of
how application components communicate.

In another dimension, shown horizontally in table 1,
adaptations differ by how aggressively the attack can be
countered. At best, the attack can be defeated, i.e., the effect
of the attack on the application can be completely canceled.
Second best is for the application to work around the at-
tack, avoiding its effects. Finally, if the attack can neither
be defeated or avoided the application can make changes to
protect against similar attacks in the future.

Although table 1 shows at least one kind of adaptation
for each of the nine possible boxes, the set of adaptations is
not intended to be comprehensive: undoubtedly others can
be invented or would be available with specific operating
systems. There may also be other useful categories; for ex-
ample, the table does not show any “honeypot” defenses in



Defeat Work Around Guard Against
Attack Attack Future Attack

application retry failed redirect reqst; increase
level request degrade srvc self-checking
QoS mgmt reserve CPU, migrate tighten crypto,
level bandwidth replicas access control
infrastructure block IP change ports, configure
level sources protocols IDSs

Table 1. A classification of defensive adapta-
tions

which an attacker is lured into wasting effort on a decoy. In
spite of these caveats, though, this set of adaptation mecha-
nisms seems to offer a useful variety of options for creating
a strategy for responding to attacks.

A third dimension for classifying adaptations is accord-
ing to the kinds of attack they work against. In table 1,
essentially two broad kinds of attack are countered:

1. direct attacks against the application, for example by
disrupting the communication between its parts;

2. indirect attacks, in which resources the application
needs are denied.

Direct attacks are countered by the mechanisms working at
the application level, plus the use of encryption. An indi-
rect attack might be countered by any of the mechanisms
in the table but generally lower-level mechanisms can be
more focused. For example, configuring a firewall to block
packets from a particular source is a highly focused defense,
but one that needs detailed information about the attack to
have been collected first. At the QoS level, flooding the
network can be countered by bandwidth reservation, over-
consumption of CPU by scheduling and priorities, crashing
of a node running an application component by migrating
the component elsewhere, and relatively privileged opera-
tions can be disabled using access control if there is a high
risk that they might be used maliciously.

A fourth dimension for classifying defenses is whether a
mechanism can be used for protection from attack as well
as for response to attack, or just for response alone. Mecha-
nisms in the table’s right-hand column, plus CPU and band-
width reservation, can be used for protection. Why not al-
ways turn these strategies “on” for best protection? Because
some of these defenses, e.g., an IDS configured to be very
sensitive to attacks, have significant costs and so need to be
used sparingly, and others, such as disabling highly privi-
leged operations, impede the normal functioning of the sys-
tem and so should be used only when necessary.

Incorporating many or all of these adaptation mecha-
nisms into a single application can greatly complicate the
application’s design. Fortunately, every one of these mecha-

nisms is orthogonal to an application’s functionality, i.e., the
application should compute the same results regardless of
whether or how many defense adaptations have been used.
In other words, every one of these adaptations changeshow
an application computes its results, notwhat results are
computed. This orthogonality allows the design of defenses
to be separated from the design of functionality.

It is natural to separate the design of functionality from
the design of defenses by putting the latter into middleware
[1]. The functionality can be designed first, then a strategy
for defensive adaptation added later. Ideally, the defensive
strategy and the mechanisms it uses would be reusable in
many different applications, but this is not always possi-
ble. For example, access controls are specific to an applica-
tion, and self-checking of application invariants will depend
on application-specific data structures. These mechanisms
seem to be exceptions, though: most of the other mecha-
nisms in table 1 are reusable across applications.

5 Related Work

We are implementing technology for defense enabling
under the DARPA project titled “Applications that Partic-
ipate in their Own Defense” (APOD). This technology in-
cludes most of the defense mechanisms described in section
4.1. Our implementation includes both

• specific examples of defense-enabled applications, and

• a toolkit for configuring an application and its environ-
ment to implement a chosen defense strategy.

The defense strategies have been implemented using the
QuO adaptive middleware [6]. Our implementation will be
discussed in a companion paper [7].

The “Intrusion Tolerance by Unpredictable Adaptation”
(ITUA) project [3], also being conducted at BBN Technolo-
gies, is exploring two questions about defense enabling:

1. What value does unpredictability add to a defensive
strategy?

2. How must a defensive strategy change to handle at-
tackers that can gain application-level privilege?

MAFTIA [8] is an ESPRIT project developing an open
architecture for transactional operations on the Internet.
MAFTIA models a successful attack on a security domain,
leading to corruption of processes in that domain, as a
“fault”; the architecture then exploits approaches to fault
tolerance that apply whether the faults have an accidental or
malicious cause. The MAFTIA architecture appears to be
an example of defense enabling.



Other projects have similar goals. The “Survivabil-
ity Architectures” [5] project aims to separate survivabil-
ity requirements from an application’s functional require-
ments. “An Aspect-Oriented Security Assurance Solution”
is a DARPA-funded project at Cigital Labs that uses aspect-
oriented programming to implement security-related code
transformations on an application program.

6 Acknowledgements

This work was sponsored by DARPA under contract
F30602-99-C-0188.

The authors would like to thank other members of the
BBN staff, Ron Watro, Chris Jones, Michael Atighetchi,
Tom Mitchell, Ron Scott, Paul Rubel, Craig Rodrigues, and
John Zinky, and members of the University of Illinois Pro-
teus team, William Sanders, Michel Cukier, James Lyons,
Prashant Pandey, and Hari Ramasamy, for discussions that
led to the conclusions in this paper.

7 Conclusion

Defense enabling can increase an application’s resis-
tance to malicious attack in an environment that offers only
flawed protection. This increased resistance means that an
attacker must work harder and take more time to corrupt
the application. This, in turn, means greater survivability
for the application on its own and an increased chance for
system administrators to detect and thwart the attack before
it succeeds.

This paper analyzed defense enabling and identified the
following as key aspects:

• slowing the acquisition of privilege by the attacker by:

– distributing parts of the application redundantly
across multiple, independently protected, secu-
rity domains that cannot be attacked concur-
rently;

– using cryptographic mechanisms to create a new
application-level privilege that is difficult for the
attacker to gain even with “root” privilege.

• responding to the attacker’s attempts to control re-
sources needed by the application by monitoring QoS
and adapting to try to restore it. A variety of adaptation
mechanisms were classified.

References

[1] D. Bakken. Middleware.
http://www.eecs.wsu.edu/∼bakken/middleware-article-
bakken.pdf.

[2] M. Barborak, M. Malek, and A. Dahbura. The consensus
problem in fault-tolerant computing.ACM Comp. Surv.,
25(2), 1993.

[3] Intrusion tolerance by unpredictable adaptation.
http://itua.bbn.com. BBN Technologies and Univer-
sity of Illinois.

[4] S. Kent. On the trail of intrusions into information systems.
IEEE Spectrum, Dec. 2000.

[5] J. Knight et al. Architectural approach to information sur-
vivability. Technical report, University of Virginia, Sept.
1997.

[6] J. Loyall, R. Schantz, J. Zinky, and D. Bakken. Specifying
and measuring quality of service in distributed object sys-
tems. InIEEE Int’l Symp. Object-Oriented Real-Time Dis-
tributed Comp., Apr. 1998. Kyoto, Japan.

[7] P. P. Pal, F. Webber, et al. Defense enabling using advanced
middleware: An example. InMILCOM, Oct. 2001.

[8] D. Powell et al. MAFTIA (malicious- and accidental-fault
tolerance for internet applications. InInt’l Conf. Dependable
Syst. and Networks, July 2001.

[9] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial.ACM Comp. Surv.,
22(4), 1990.

[10] B. Schneier. Applied Cryptography. John Wiley & Sons,
1996.

[11] A. Tanenbaum.Computer Networks. Prentice-Hall, 2nd edi-
tion, 1989.

[12] US Department of Defense.Trusted Computer System Eval-
uation Criteria (Orange Book), Dec. 1985. DoD 5200.28-
STD.


