
Quantitative Hook-Up Security for Covert Channel Analysis

D.G. Weber

Odyssey Research Associates, Inc.
301A Harris B. Dates Drive

Ithaca, NY 14850-1313
607 277 2020

Abstract

Computer Security Foundations Workshop 1988

We construct a class of security policies for multi-level
systems. Policies of this class allow some downgrading of
information but limit its bandwidth. A policy that prevents
downgrading completely is a special instance within this
class. Security as defined by this class is quantitative in
the sense that deviations from perfect security can be com-
pared by the degree to which they deviate. It is analytical
or “hook-up security” in the sense that the degree of secu-
rity or insecurity of a large system can be derived formally
from the degree of security or insecurity of subsystems from
which it is composed.

1 Introduction

The task of building multi-level secure (MLS) computer
systems has shown itself to be difficult. Part of the diffi-
culty has come from definitions of “security” that are not
precise enough, not flexible enough, or not general enough,
to be used as specifications against which real systems can
be measured. In this paper, we attempt to bring security
specifications closer to the point at which they can be ap-
plied naturally and confidently to real systems.

To begin, we review some previous developments of
MLS specifications. The Bell-LaPadula security policy[1]
prevented the most direct, Trojan-Horse attacks against
multi-level systems, and showed the danger of assuming
that security was trivial. Covert channels could be handled
within the Bell-LaPadula framework, but the methods used
were ad hoc.

0This work was supported by the Army Communications and Elec-
tronics Command at Fort Monmouth under Contract No. DAAB07-87-
C-A011. The views and conclusions contained in this paper are those of
the authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Army or the U.S. Gov-
ernment.

The Goguen-Meseguer security policy[2] was an attempt
to capture the intuitive idea of non-interference. Preventing
requests by users at high security levels from “interfering”
with the responses given to users at lower security levels
handles all threats handled by Bell-LaPadula, and prevents
covert storage channels as well. However, the class of sys-
tems covered by the Goguen-Meseguer policy was limited;
whether the policy was also ad hoc was not clear.

The model of information flow proposed by Sutherland
[7] treated flows of information as “deducibility”. The
model was very general, but could be instantiated to pro-
duce a multi-level security policy, called deducibility secu-
rity, similar to Goguen-Meseguer.

Hook-up security was introduced by McCullough[4].
While it may seem obvious that “secure” interconnection of
“secure” systems will produce a larger system that is also
“secure”, McCullough showed that this depends crucially
on the definition of security used. Using the formal defini-
tions of non-interference and of deducibility security, the in-
terconnection of secure systems was at best ill-defined and
was at worst insecure. McCullough strengthened deducibil-
ity security so that it became a composable property, i.e.,
the interconnection of two component systems for which
the property holds yields a larger system for which the prop-
erty also holds. This property was called “restrictiveness”
or “restriction”.

Hook-up security is useful for showing, formally, that
large systems are secure. One need not apply Goguen-
Meseguer or deducibility security directly to the entire sys-
tem, but may analyze the system into components, and show
that each component is restrictive. The theorem that restric-
tion is composable then serves as the basic tool of secu-
rity analysis. In addition, however, many other theorems
about the hook-up of systems are possible and useful. Other
composable properties, related to security, were found[8].
Other theorems were developed to show that components
with properties other than restriction can be interconnected
to produce restrictive systems[10],[6]; these theorems are



useful for analyzing the security of systems in which indi-
vidual parts are not restrictive.

Yet a major problem remains: real-world “secure” sys-
tems are often not intended to be completely secure! Com-
plete and perfect security often interferes with the func-
tionality desired in real systems, and practicality sometimes
rules out perfectly secure designs. Therefore, designers of-
ten prefer to approximate perfect security. Security prop-
erties which allow some form of insecurity yet retain lim-
its on what can be deduced by low-level users about the
behavior of users at higher level have been proposed: by
Goguen-Meseguer (“conditional-noninterference”)[2], by
this author in the context of fault tolerance[9], and by
others[8],[3]. These proposed properties all suffer from two
drawbacks:

1. The degree to which systems are allowed to be inse-
cure is not quantified. Thus, there is no formal method
for stating whether a system meeting one of these poli-
cies is slightly or grossly insecure.

2. Even if informal methods are used to show that var-
ious components are only slightly insecure, there is
no proof that the interconnection of slightly insecure
components won’t yield a larger system that leaks mas-
sively. In other words, a theory of security analysis for
these properties does not exist.

This paper is a first attempt at addressing these problems.
A class of security policies is introduced; policies of the
class put quantitative limits on downgrading, and are also
composable. The class is a generalization of a composable
MLS property, flow-security[5], introduced by McCullough
as a variant of restriction. Section 2 discusses flow-security.
Section 3 gives a formal meaning to the interconnection of
systems. Section 4 motivates the definition of n-limited se-
cure state machines, which deviate from perfect security to
a degree indicated by the positive integer n. Section 5 de-
fines n-limited security precisely. In section 6, it is claimed
and argued informally that n-limited security is a kind of
composable property. Finally, section 7 notes the limita-
tions of this result, and gives directions for future research.

2 Multi-level Security

The property of flow-security is defined for a particular
class of state machines. A state machine of this class is a
6-tuple (Σ, E, I, O,Φ, lvl), where:

• Σ is a set of states;

• E is a set of events;

• I is a set of input events, with I ⊆ E;

• O is a set of output events, with O ⊆ E and with O
and I disjoint;

• Φ is a ternary relation on events and ordered pairs of
states;

• lvl is a function from events into the (fixed) set of pos-
sible security levels.

At each moment of time, the state machine exists in ex-
actly one state from the set Σ. It progresses through time by
engaging sequentially in events from the set E. When the
machine is in the state sold, the event emay occur taking the
machine into state snew only if Φ holds for (e, sold, snew).
This transition is written sold

e→ snew, and in general Φ
is called the transition relation. When the machine can
make transitions involving a sequence of events, γ, we write
sold

γ→ snew.
Every state machine we consider will be input-total.

This means that from every state and for every input event it
is possible for the machine to make some transition. It can
never refuse an input. Input-totality can be thought of either
as a limitation on the class of state machines, or as a pre-
condition for defining an event to be an input. Input-totality
is needed to prevent the refusal of an input event from con-
veying information back to the source of that input.

We assume that a machine is started in some state, s0,
chosen in advance and not on the basis of classified infor-
mation. The choice of an input event, ein, can be made at
any time but only by some external users or agents who have
authorized access to information at security level lvl(ein).
Any output event, eout, is assumed to be visible to exter-
nal users or agents authorized at security level lvl(eout) or
greater. We will often consider what can be deduced by an
observer at some particular level l; security levels less than
or equal to l will be called “low” levels, while other lev-
els will be called “high”. If the machine is to be secure for
the observer at l, high-level information, i.e., that received
via inputs at high levels, must be prevented from affecting
observations of outputs at low levels.

The effects of inputs from high-level users are propa-
gated through the machine at each transition. Rather than
constrain the effect of high-level inputs on low-level out-
puts directly, we constrain the effects on the state of the
machine after each transition. Suppose that it is possible to
distinguish a high-level “aspect” and a low-level “aspect”
of each state, and to define an equivalence relation on states
such that two states belong to the same equivalence class ex-
actly when they share the same low-level aspects. Security
can then be expressed as properties of the transition relation
that prevent high-level aspects of the state from affecting
low-level ones.

To illustrate the distinction between different “aspects”
of states, consider an example. If the set of states is de-
fined as the direct product of sets of values for different



“state variables”, then we might assign security levels to
state variables. The high-level “aspect” of a state would be
the set of values of its high-level variables, and similarly the
low-level “aspect” of a state would be the set of values of
its low-level variables. In this case, states will belong to the
same equivalence class when low-level variables take equal
values. Rather than assume that states are always combi-
nations of state variables, as in this example, we will sim-
ply rely on the equivalence relation on states to separate the
high- from the low-level aspects.

Given an equivalence relation on states for level l, a ma-
chine is flow-secure at l if the following conditions hold:

• High-level input transitions do not affect the low-level
aspects of the state;

• Low-level input transitions may affect any aspect of
the state, but high-level aspects of the state before the
transition cannot affect low-level aspects of the state
after the transition;

• During a sequence of output transitions, the high-level
aspects of the state before the sequence may affect
high-level outputs and high-level aspects of the state,
but they cannot affect the sequence of low-level out-
puts, nor can they affect the low-level aspects of the
state afterward.

A machine is flow-secure if it is flow-secure at every level.
The conditions that define flow security are stated in-

formally above. Formality will be added in later sections,
when the property of n-limited security is stated. n-limited
security, for n = 1, is slightly stronger than flow-security at
a given level.

Note that there may be events of the machine (set E)
which are neither inputs nor outputs (sets I and O). These
are internal events, and for simplicity we will treat these
events as though they were as visible to external users as
outputs. This simplification can only overestimate the inse-
curity of the machine.

3 Hook-Up

Two state machines, A and B, can be “hooked up” or
interconnected to form a larger state machine, denoted by
A‖B. Once a precise definition has been given for the in-
terconnection operator, ‖, properties ofA‖B can be inferred
from the properties of A and B individually.

Interconnection of two machines means that events be-
longing to one machine but not to the other may be ex-
ecuted independently by each machine, while events that
are shared by the machines must be executed simultane-
ously by both. Let A = (ΣA, EA, IA, OA,ΦA, lvlA) and
B = (ΣB , EB , IB , OB ,ΦB , lvlB). The two machines may

have some events in common; let Eint = EA ∩ EB . The
interconnection A‖B will be defined if each event, e, of
Eint is an output of one machine and an input of the other,
and if lvlA(e) = lvlB(e). The machine A‖B is the tuple
(Σ, E, I, O,Φ, lvl), where

• Σ = ΣA × ΣB , i.e., each state of Σ is an ordered pair
of states from ΣA and ΣB ;

• E = EA ∪ EB ;

• I = (IA ∪ IB)− Eint;

• O = (OA ∪OB)− Eint;

• Let e ∈ E be an event, and let s1 = (sA1, sB1) and
s2 = (sA2, sB2) be states of A‖B formed as pairs of
states of its components. There are three cases:

1. When e ∈ EA and e 6∈ EB , Φ(e, s1, s2) holds iff
ΦA(e, sA1, sA2) and sB1 = sB2.

2. When e ∈ EB and e 6∈ EA, Φ(e, s1, s2) holds iff
ΦB(e, sB1, sB2) and sA1 = sA2.

3. When e ∈ Eint, Φ(e, s1, s2) holds iff
ΦA(e, sA1, sA2) and ΦB(e, sB1, sB2).

• lvl is the union of lvlA with lvlB .

A property is composable if, given that it holds both ofA
and of B, then it holds for A‖B. Flow-security, as defined
in the previous section, is composable.

4 Covert Channels

When a system is not secure, it is because the design of
that system allows a high-level user to encode information
in the sequence of high-level inputs and outputs, and also
allows lower-level users to decode the information later by
interacting with the system at lower levels. The method of
encoding information is called a channel. A channel al-
lows high-level information to be downgraded, and there-
fore compromised.

Usually two types of channel are distinguished: overt
and covert. Overt channels are distinguished from covert
ones in that the method used to encode information is trivial.
For example, if a high-level user can write into a file that can
be read by a lower-level user, the channel is overt.

Covert channels are often more subtle. For example,
suppose a file system implements concurrency control by
locking a file when it is open for writing, and promptly re-
jecting other requests for access. A high-level user could
choose whether to lock a particular file at a particular time
depending on one bit of high-level information. A low-level
user could try to access the same file at an agreed-upon time
after the high-level choice was made; whether the request



�
�
�
��

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
��

Figure 1. Coarse-grained partition of states.

for access is accepted or rejected allows the low-level user
to determine the single bit of high-level information. By
agreeing on a schedule of times at which the lock can be
reset, a sequence of bits can be downgraded.

We will not try to make precise the distinction between
covert and overt, but rather will look for security properties
that can apply to both cases as appropriate.

In the definition of flow-security in section 2, we ap-
pealed to an equivalence relation on states to distinguish
low-level aspects of a state from high-level aspects. When
some downgrading is to be allowed, however, we may dis-
tinguish three aspects: low-level, high-level, and a shared
level through which information can be downgraded from
high to low. If the high-, low-level, and shared aspects are
thought of as sets of state variables, then it is the shared
variables which will act as storage for transferring informa-
tion from high to low. Using state variables as an exam-
ple, though, should not be mistaken for the general case. In
general, a set of states might not be separable into a direct
product of sets of values of state variables, and even if it
is, the shared aspects of each state need not correspond to a
particular variable.

The three aspects of each state can be distinguished by
defining two equivalence relations: one which partitions
states into relatively coarse equivalence classes, separating
the low-level aspects from the shared and high-level ones
(see Figure 1), and one which partitions states into rela-
tively fine equivalence classes, separating the low-level and
shared aspects from the high-level ones (see Figure 2). The
first relation takes states as equivalent if they have the same
low-level aspects; the second takes states as equivalent if
they have the same low-level and shared aspects.

To limit the rate at which information can be down-
graded, we prevent direct downgrading from high to low,
and constraint the amount of information that can be stored
at one time in the shared aspects.

How dangerous is a particular channel? The answer de-
pends on a variety of factors:

• How many bits can be communicated at once? In the

�
�
�
��

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
��

@
@
@
@
@
@

@
@
@
@
@
@
@
@
@
@@

@
@
@
@
@
@
@
@
@
@
@
@

@
@
@
@
@
@
@
@
@
@@

@
@
@
@
@
@

Figure 2. Fine-grained partition of states.

covert-channel example above, one bit at a time was
communicated, while in the overt-channel example,
the contents of an entire file could be downgraded in
one operation.

• What information can be communicated through the
channel? If no interesting high-level information can
be fed into the channel, it is hardly dangerous.

• How quickly can the encoding mechanism be set up,
reset, and re-used, if at all? If an improbable scenario
must happen before the channel can be set up, if it can
never be reset, or if resetting takes a long time, then the
channel is generally less dangerous than if it can be set
up quickly.

In what follows we will be concerned primarily with the first
factor. Channels will be treated as useful for communicat-
ing any kind of information; only the rate of communication
will be important. To take account of probability and other
specialized facts about the set-up of the channel, one would
need to consider the possible state-machine transitions in
greater detail than we do here. These simplifications will
tend to overestimate the danger posed by a given channel.

If the shared aspects of states permit the recording of
at most a choice among n alternatives, then at most log2 n
bits can be downgraded during any one transition. If a
sequence of k transitions can be accomplished during t
seconds, then the bandwidth of the channel has an upper
bound of (k log2 n)/t bits per second.

Note that it is not sufficient to state bandwidths in terms
of “bits per transition”, and then give a typical time per tran-
sition. In our model of process interconnection, transitions
of hooked-up machines may proceed concurrently. There-
fore, the average time taken by transitions will generally be
less than the typical time taken sequentially by each.

Note also that timing considerations do not occur in the
model directly, but only enter through an interpretation in
which channel bandwidths are derived. Therefore, channels
that use the times at which events occur to encode informa-
tion (timing channels) are not accounted for. Only covert



storage channels are quantified by this model.
In the following section, we give a precise definition of a

security property to limit downgrading via storage channels.

5 Limited Downgrading

Definition 1 A state machine is n-limited secure at level l,
where n is a positive integer, if there exist two equivalence
relations on states, ≡H and ≡L, such that the following
conditions hold:

1. Equivalence relation ≡H partitions the set of states
into a finer, more detailed, set of classes than does≡L.
In other words, for any states p and q, p ≡H q → p ≡L
q. The differences between classes of ≡L correspond
to information known at level l, while differences be-
tween classes of ≡H include additional, shared infor-
mation that may be available for downgrading.

2. Equivalence relation ≡H partitions each equivalence
class of relation ≡L into at most n sub-classes. Thus,
no set of n + 1 states, s1, s2, . . ., sn, sn+1, can be
found such that si ≡L sj while si 6≡H sj for i 6= j.

3. The machine is input-total.

4. High-level input transitions don’t affect low-level as-
pects of the state. So, for any input, e, with lvl(e) 6≤ l,
and for any transition, p e→ q, we have p ≡L q.

5. During a low-level input transition, high-level aspects
of the state before the transition can’t affect low-level
aspects afterward. In other words, for any input, e,
with lvl(e) ≤ l, and for any states p, p′, and q, such
that p e→ q and p ≡H p′, there exists a state, q′, such
that p′ e→ q′ and q ≡L q′.

6. During an output (or internal) transition, high-level as-
pects of the state before the transition can’t cause low-
level outputs or affect low-level aspects of the state af-
terward. In other words, suppose we are given an out-
put, e, and states p, p′, and q, such that p e→ q and
p ≡H p′. There are two cases:

(a) If e is a high-level output, with lvl(e) 6≤ l, then
there exists a state, q′, and a sequence of high-
level outputs, γ, such that p′

γ→ q′, and q ≡L q′.
(b) If e is a low-level output, with lvl(e) ≤ l, then

there exists a state, q′, and a sequence of high-
level outputs, γ, such that p′

eγ→ q′, and q ≡L q′.

A state machine that is 1-limited secure at every level is
flow-secure. When n = 1, relations ≡H and ≡L must be
the same, and the constraints on transitions become slightly
stronger than those for flow-security. (The only difference

LOW

SHARED

HIGH

?

-
B
B
B
B
B
BB -

Figure 3. Flows possible for high-level input.

occurs in rule 6b, in which the more general transition,

p′
γeγ′

→ q′, where γ and γ′ are sequences of high-level out-
puts, may exist to prevent deducibility of high-level events
and aspects of the state.)

Why do the above rules limit downgrading? First, one
is prevented from using high-level inputs to write directly
into the low-level state, and one is prevented from using
low-level outputs to read directly from the high-level state.
Second, during a transition one may move information from
high-level to shared aspects and from shared to low-level
ones, but influence from high directly to low is ruled out.
Therefore, high-level choices to be downgraded must pass
through the shared aspects of the state, and this acts as a
bottleneck.

The rules of the definition are constraints that limit
cause-and-effect during transitions, and so limit possible in-
formation flow. However, it is helpful to visualize how in-
formation can flow during transitions. Figures 3, 4, 5, and 6
show schematically, for the four possible kinds of event, the
information flows that could be involved in downgrading.
(Of course, upgrading flows are always possible, but these
do not change the rate of downgrading.) Each diagram is
a pictorial division of the state into ”HIGH”, ”LOW” and
”SHARED” aspects. Information can flow from high to
low, but only by passing through the shared region.

6 Analysis

The property defined in the previous section is compos-
able, in the following sense:

Theorem 1 If machine A is n-limited secure at level l, and
machineB ism-limited secure at level l, then machineA‖B
is nm-limited secure at level l.



LOW

SHARED

HIGH

?

?
-�

�
�
�
�
��

-

�
�
�
�
�
�
�
�
�
�
�
��

-

Figure 4. Flows possible for low-level input.

LOW

SHARED

HIGH

?

?

-

�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
�
��

Figure 5. Flows possible for high-level output.

LOW

SHARED

HIGH

?

?
-

B
B
B
B
B
BBN

Figure 6. Flows possible for low-level output.

The proof is straightforward, and we sketch it here.
Since A is n-limited secure, there are equivalence relations
≡AH and ≡AL on the states of A, such that properties 1
through 6 of the previous section hold. Similarly, there are
equivalence relations≡BH and≡BL on the states ofB. Let
sA1 and sA2 be states of A, let sB1 and sB2 be states of B,
and let s1 = (sA1, sB1) and s2 = (sA2, sB2) be states of
A‖B formed as pairs of states of its components. We define
equivalence relations on the states of A‖B as follows:

• s1 ≡H s2 iff sA1 ≡AH sA2 and sB1 ≡BH sB2

• s1 ≡L s2 iff sA1 ≡AL sA2 and sB1 ≡BL sB2

The six properties now hold for the interconnected ma-
chine, and we enumerate the cases of the proof.

1. ≡H defines classes of finer granularity than ≡L be-
cause its components do.

2. An arbitrary class of ≡L is partitioned at most n times
by ≡AH and at most m times by ≡BH , and therefore,
at most nm times by ≡H .

3. An input to A‖B is an input to exactly one of its com-
ponents, so the interconnected machine is input-total
when its components are.

4. A high-level input affects exactly one of the compo-
nent machines, and does not change its low-level state.
Therefore, the low-level state of the entire machine is
unchanged.

5. A low-level input affects exactly one of the component
machines, and changing high-level or shared aspects of
a state before a transition does not affect the low-level
state after. Therefore, the low-level state of the entire
machine is unaffected.



6. The two cases corresponding to output (and internal)
events are similar. The case of low-level events is more
difficult, and will be discussed as an example. Given
that a low-level non-input event is possible for some
state of the interconnected machine, the event will ei-
ther be an output (or internal event) of one machine
or the output of one and the input of the other. With-
out loss of generality, let A be the machine which per-
forms the output. A individually obeys rule 6 of the
previous section; therefore, a state ofA before the tran-
sition, with different high-level aspects, may require
that additional high-level outputs be performed, but the
low-level state resulting after this extended sequence
of transitions will be unaffected. Even if some of the
additional high-level outputs from A are also inputs to
B they will not affect B’s low-level state. If B must
accept the low-level output from A, differences in B’s
state before the transition will not affect B’s low-level
state after. Thus, the low-level state of the intercon-
nected machine will also be unaffected.

What does this theorem mean? It tells us that the sever-
ity of a channel for downgrading by a composite machine is
limited by the maximum severity of channels on its compo-
nent machines. We can hook up two leaky machines to get
a machine with a (possibly) larger leak, but the combined
leak won’t be arbitrarily bad.

Superficially, the result appears quite natural, since an
n-way choice for machine A and an m-way choice for ma-
chine B represent log2 n and log2m bits respectively, and
log2 nm is their sum. However, in the final analysis it is the
bandwidths of channels which should be compared.

Suppose the average time per transition is t and is equal
for A and B. If A and B have no events in common, then
running them concurrently will on the average execute one
transition on A and one on B in time t, and will down-
grade at most log2 nm bits. This rate is (log2 nm)/t bits
per second. Could information be downgraded faster if
the machines were hooked up? The theorem merely limits
A‖B to downgrading at most log2 nm bits per transition.
If most transitions executed by A‖B are concurrent, then
A‖B might approach the rate of 2 transitions per time t.
The limiting rate would then be (2 log2 nm)/t bits per sec-
ond. This is double the rate that is possible for the machines
acting independently.

This speedup, while allowed by the theorem, is unlikely
since it depends on most transitions happening concurrently
on one or the other machine. Yet these concurrent tran-
sitions are precisely the ones which should be limited to
downgrading either log2 n or log2m bits. It is the events
shared between A and B which may compromise log2 nm
bits, but these events take twice as long on average. A more
detailed analysis of the relation between equivalence classes
of states and bandwidth is needed before stricter limits on

bandwidth can be set.

7 Conclusion

The property of n-limited security comes closer than its
predecessors to being adequate as a security policy for real
MLS systems. Yet it too has many inadequacies.

• The fact that different transitions may take different
times, and hence affect the bandwidth of channels, is
not built into the model.

• The rules limiting transitions of the state machine ap-
pear ad hoc, and are not formally derived from a gen-
eral theory of information flow or deducibility.

• The degree to which a system is insecure is not mea-
sured, but merely bounded. An n-limited secure
system is guaranteed not to compromise information
faster than some rate, yet it may be that the design
details of a specific n-limited secure machine limit
its downgrading bandwidth to a much smaller rate in-
stead. It would be far better to use a framework in
which the security policy is characterized by the worst
rate that can actually be realized by that machine.

• The bandwidth of a channel at level l may or may not
be related to the bandwidth of a channel at level l′,
and n-limited security does not necessarily make this
distinction. For example, a machine that downgrades
simultaneously from TOP SECRET to SECRET and
from SECRET to CONFIDENTIAL is leakier than a
machine that can only do one or the other. Yet ei-
ther machine may be, say, 2-limited secure at both SE-
CRET and CONFIDENTIAL.

• Probabilistic considerations are not included. For ex-
ample, a finite buffer which may become blocked can
serve as a covert channel to downgrade information.
Yet, if the buffer is made so large that it is unlikely
even to be full, the channel is not useful.

These problems represent areas of future research.

References

[1] D. Bell and L. LaPadula. Secure computer systems: Uni-
fied exposition and Multics interpretation. Technical Report
MTR-2997, Revision 2, MITRE Corp., Bedford, MA, Mar.
1976.

[2] J. Goguen and J. Meseguer. Security policy and security
models. In IEEE Symp. Security and Privacy, 1982.

[3] D. Johnson and F. Thayer. Stating security requirements
with tolerable sets. Technical report, MITRE Corp., July
1987.



[4] D. McCullough. Specifications for multi-level security and
a hook-up property. In IEEE Symp. Security and Privacy,
1987.

[5] D. McCullough. Noninterference and the composability of
security properties. In IEEE Symp. Security and Privacy,
1988.

[6] D. Rosenthal. An approach to increasing the automation of
the verification of security. In Comp. Security Foundations
Workshop, 1988.

[7] D. Sutherland. A model of information. In Nat’l Comp.
Security Conf., Sept. 1986.

[8] S. T. Vinter, D. Weber, et al. The secure distributed operat-
ing system project. Technical Report 6144, BBN Labs and
Odyssey Research Associates, Feb. 1988.

[9] D. Weber. Specifications for fault tolerance. Technical Re-
port 19-3, ORA Corp., Jan. 1988.

[10] D. Weber and B. Lubarsky. The SDOS project – verify-
ing hook-up security. In Comp. Security Applications Conf.,
pages 7–15, 1987.


