
The SDOSproject – Verifying Hook-up Security

D.G. Weber
BobLubarsky

Odyssey ResearchAssociates,Inc.
301AHarrisB. DatesDrive

Ithaca,NY 14850-1313
6072772020

Abstract

AerospaceComputer Security Applications Conference1987

Verification of multi-level security for a distributed,
object-orientedsystemis madeeasierif thesystemsecurity
policy is a hook-upproperty: thepropertymustbetrue for
a systemif it is true for each communicatingcomponentof
that system.Thework of formal verificationfor the entire
systemmaythenbedividedinto independentsubtasks,each
taskbeingthe verificationof the hook-uppropertyfor one
systemcomponent.

In this paper, work toward designand verificationof a
multi-levelsecuredistributedoperatingsystemis described.
A techniqueis presentedfor verifyinga particular hook-up
securitypropertyusingtheGypsyVerificationEnvironment.

1 Intr oduction

Thiswork wasundertakenduringtheSecureDistributed
OperatingSystemProject(SDOS),now ongoingatOdyssey
ResearchAssociates(ORA), andatBBN Laboratories.The
SDOSprojecthasseveralgoals:

1. theexplorationof multi-level security(MLS) for adis-
tributedoperatingsystem(DOS);

2. thedevelopmentof a top-level designfor aDOSbased
on theobject-orientedprinciplesusedin thedesignof

0Thisworkwassupportedby theAir ForceSystemsCommandatRome
Air DevelopmentCenterunderContractNo. F30602-85-C-0056.The
views andconclusionscontainedin this paperarethoseof theauthorsand
shouldnot be interpretedasnecessarilyrepresentingthe official policies,
eitherexpressedor implied,of theAir Forceor theU.S.Government.

0Permissionto copy without fee all or part of this materialis granted
providedthatthecopiesarenot madeor distributedfor directcommercial
advantage,the ACM copyright noticeandthe title of the publicationand
its dateappear, andnotice is given that copying is by permissionof the
Associationfor ComputingMachinery. To copy otherwise,or to republish,
requiresa feeand/orspecificpermission.

theCronusDOS[8] developedatBBN Labs;

3. verificationof the top-level designagainstproperties
givenin theSDOSsecuritypolicy.

The top-level designfor SDOS is being expressedin
theformal specificationlanguageof theGypsyVerification
Environment[4]. That language,also called Gypsy, is a
Pascal-like programminglanguagein which programcor-
rectnessis expressedby embeddedassertions.

TheSDOSsecuritypolicy containsanMLS component
which is taken to be the hook-upsecuritypropertyof Mc-
Cullough [7]. This securitypolicy guaranteesthat proof
of multi-level security for the entire systemcan be had
by proving hook-upsecurityfor its communicatingcompo-
nents.Thisguaranteeis particularlyappropriatefor security
verificationof an object-orientedsystem. We have found
that this propertyis not directly expressibleby Gypsyem-
beddedassertions.However, wehavealsofoundthatcertain
designs,expressiblein Gypsy, may be transformedso that
theverificationconditionsproducedby theGypsyVerifica-
tion Environmentimply thehook-upsecurityproperty.

In section2 we will review briefly someaspectsof the
object-orientedDOS designchosenfor SDOS.Section3
will outline the SDOS security policy, dividing the con-
straintsof thatpolicy into threecategories:mandatory, dis-
cretionary, andconfigurationconstraints.Section4 forms
thebulk of thepaper;in it is discusseda techniquefor veri-
fying adesignexpressedin Gypsyagainsttheconstraintsof
themandatorypolicy.

2 An Object-Oriented DOS Design

A primary goal of a distributedoperatingsystemis to
provide global systemresourcemanagementover a net-
work of communicatingcomputers.Thismeansthatsystem
resources,suchas operatingsystemservicesanddevices,

shouldbe controlledthrougha single,uniform facility for
theentireDOS.

The designsof the CronusDOS and SDOSboth have
emphasizedobject-orientedmethodology, in particularthe
object model [6]. In this model, objectsare instancesof
abstractdatatypesandcorrespondto logically addressable
resources,suchasdataandphysicaldevices. The type of
eachobjectdefinesthesetof operationsontheobject;these
operationsaretheonly meansof accessingtheobject. Ob-
jectoperationsareimplementedby objectmanagers,which
hidetherepresentationof theobjectfrom its accessors.

Eachprocessorin theunderlyingSDOSnetwork will be
calledahost.

Eachserviceperformedby SDOSconsistsof a client
processinvoking an (abstract)operationon an objectof a
particularabstractdatatype. Two kindsof systemprocess
participatein providing thisservice.

1. Message-switchingprocessesfacilitate the routing of
messagetraffic betweennetwork hostsand between
processesona singlehost.

2. At leastonemanagerprocessfor theabstractdatatype
is involvedin performingtheoperation.

The basicstructureof the systemhasonemessageswitch
processandseveralobjectmanagerprocessesperhost.

Wheremusttheenforcementfor multi-level securityre-
side?Clearly, if thereareobjectsof severalsecuritylevels
on onehost,thenthemessage-switchmustbetrusted.The
objectmanagerprocessesneednot be trustedif their only
communicationis via the message-switch.However, if all
of themanagersareuntrusted,thenwhenseveraloperations
areinvokedonthesamehostonobjectsatdifferentsecurity
levels,differentmanagerprocessesmusthandlethem,even
if eachmanagerprocessis functionallyequivalent.Thiscan
result in inefficiency due to the overheadof processcre-
ation,andfrom swappingbetweena largenumberof object
managersservicingdifferentsecuritylevels. It may there-
fore bepreferableto build sometrusted,multi-level secure
objectmanagers.For SDOS,where“trust” is to be guar-
anteedby formal verification,this meansthat themessage-
switchandsomesubsetof theobjectmanagersmustbever-
ified.

It is importantto notethatthesystemwe havedescribed
is extensible. This meansthat thesetof abstractdatatypes
andthesetof operationsdefinedon themarenot fixed,and
maybeextendedby addingnew objectmanagers.If a new
manageris to handleinvocationsat morethanonesecurity
level, its functionalitymustbeverifiedwith thesamedegree
of rigor asthemessage-switchandothertrustedmanagers.

Herein lies the advantageoffered by verification of a
hook-upsecurityproperty:new trustedsystemcomponents,
either new hosts with trustedmessage-switches,or new
trustedobject managers,may be included in the system

without reverificationof already-existingcomponents.This
advantagebecomesparticularlygreatin anobject-oriented
distributedsystem.

3 Security Policy

The SDOS security policy [9] divides policy require-
mentsinto threetypes:

1. Discretionaryrequirements– Theseare accesscon-
trols placedby userson the useof the abstractoper-
ationsdefinedby SDOS.Becausethe set of abstract
datatypesis extensible,andthesetof abstractopera-
tionscannotbegivenin advance,thediscretionarypol-
icy rulesmustbestatedgenerically. Thegenericrules
maythenbeappliedto any datatype.

2. Mandatoryrequirements– Theseare controlson in-
formationflow amongthe system’s untrustedcompo-
nentswhich canoccurthroughprocessingby thesys-
tem’s trustedcomponents.The controlsare defined,
not asaccesscontrols,but asconstraintson thepossi-
ble extrinsic behavior of the system,that is, in terms
of possiblehistoriesof message-passinginteractions
betweenthetrustedanduntrustedpartsof thesystem.
Theseconstraintsare dependenton the security lev-
elsof theuntrustedcomponents.They aredesignedto
limit whatusersatonesecuritylevel candeduceabout
actionstakenby usersat greater(or incomparable)se-
curity levels.

3. Configurationrequirements– Theseare rules which
constrainthe rolesof the systemsecurityadministra-
tors,andwhich governhow discretionaryandmanda-
tory controlsapply in caseof changesto the SDOS
network configuration.

We have viewed the mandatoryanddiscretionarypoli-
cies as applying to two quite distinct kinds of interaction
betweenthetrustedanduntrustedpartsof thesystem.The
discretionarypolicy appliesto theuseof thesystem-defined
abstractoperations,while the mandatoryapplies to the
lower-level operationsof sendingandreceiving messages.
Eventhoughtheselower-level message-passingoperations
aretheactionsout of which thehigher-level abstractoper-
ationsareimplemented,themandatorypolicy is not simply
a specialcaseof thediscretionarypolicy. They arepolicies
on differentlevelsof abstraction.

In what follows, we will focus on exclusively on the
mandatory(MLS) policy requirements.

3.1 Traces

In orderto definethemandatoryMLS policy in termsof
message-passinginteractions,we have turnedto a descrip-

tion of processbehavior basedon traces[2]. A traceis a
historyof a process’interactionwith its environment. As-
sociatedwith eachprocessis asetof eventsin which it may
engage. For our purposes,theseeventswill be message-
passingeventsbetweenprocesses.Eachtraceis thena se-
quenceof message-passingevents.Processbehavior is de-
scribedasa setof possibletraces.

Definingsecurityin termsof possibletracesof message-
passingeventswill causeus to adopta policy different in
form from thewidely-usedpolicy of Bell andLaPadula[1].
The Bell-LaPadulapolicy is commonlygiven as require-
mentson theinternalstatesof anabstractstatemachine.A
policy on tracesleavesthe developmentof statemachines
to thesystemdesigner.

Notation for Traces We will needa few notationscon-
cerningsequences.Let

�
and � besetsof events, � a par-

ticular event, � and � sequencesof events,and � :
���� �

a mappingfrom
�

into � . Let 	 be an arbitrary security
level, andsupposethateachevent is associatedwith some
securitylevel. We define:

 �
is thesetof eventsnot in

�
;

 ���
is thesetof all possiblesequencesformedfrom the

eventsin
�

;

 ��
�� is theconcatenationof � followedby � ;

 ����� if f � is aninitial subsequenceof � , while �����
if f � is a properinitial subsequence;

 	������������ is thelasteventin � , while ��� ��	������������ is the
tracewith thelasteventremoved;

 �"! �
, theprojectionof � with respectto set

�
, is the

sequenceobtainedfrom � by deletingall eventsnot in�
andpreservingtheorderof theeventsthatareleft;

 �#!$	 is the projectionof � with respectto the setof
eventsassociatedwith securitylevelslessthanor equal
to level 	 ;

 � � is themappingfrom
�%�

into � �
of applicationof �

componentwise;

'& �)(is the tracewith the singleevent � , and & (is the
emptytrace.

A processwill be definedas the following structureof
four sets,& �+*-,.*0/%*21 (, where

�
is a setof events,

,43��
a

setof input events,
/53'�

a setof outputevents,and
163

���
a setof traces.For any possibletraceof theprocess,all

initial subsequencesarealsotraces:

7 � *98;:<� � * ��
 8;:=1>� � :<1@?

3.2 Hook-up Security

Definition 1 A process& �$*0,A*B/%*21 (is input-total , or sim-
ply total, iff any trace may alwaysbe extendedwith any
input. Thatis,

7 � :<1@* 7DC :<,.* �
 & C (:=1@?
Definition 2 A process& �$*0,A*B/%*21 (is restrictive with re-
spectto level l iff it is input-total,andadditionally, for any
trace, if any block of inputsto that traceis modifiedwith-
out altering the sequenceof inputsvisible at level 	 , then
thereis anothertracefor which futurebehavioris modified,
which containsno future inputsat higherlevels,andwhich
exhibits the samebehavioras the original trace at levels
below 	 . Formally,

7 � *98;:<���E* 7 � * �GF :H,��)* �
 �
 8;:<1 �I��J
�K!L	�M��GFN!L	 �

O 8 F :=���E* �
 �GF
 8 F :<1 �I��J8 F !P	�M 8 !L	D�I��J8 F�! , ! 	QM & (?
This is the basicpropertydefinedby McCullough. Its

intent is roughly as follows: even if onepooledall infor-
mationbasedon behavior of theprocessat level 	 or below,
one’sability to deducetheexistenceor non-existenceof in-
puts at higher (or incomparable)levels is limited. Given
a particularsetof inputsat higher levels, thereis at least
oneothertracewith identicalbehavior at level 	 andbelow
which masksthe patternof the higher-level inputs. Note
that this definition cannotrule out deducibility basedon
knowledgeof the relative probability of traces,or on the
timesatwhich eventsin a traceoccur.

Two processes,viewed asexecutingin parallel,may in
somecasesbehookedtogetherto form anotherprocess.If
aninput of oneprocessis alsoanoutputeventof theother,
thenthismutualeventisneitheraninputnoranoutputof the
hooked-upprocessbut is aninternalcommunicationevent.
We mustrule out the possibility that eventssharedby two
processesarenot communicationeventsof this form.

Definition 3 ProcessesRTSUM & � S *0, S *B/ S *21 SV(and RXWYM& � W *-, W *0/ W *21 WN(are coherent if
� STZ � W M6� , SPZ / W ��[\� , WPZ / S � ?

Definition 4 The hook-up of two processes, R�S M& � S *-, S *0/ S *21 SV(and R]W^M & � W *0, W *B/ W *21 WN(, is definedif
R�S and RXW are coherentandyieldsa new processRTS`_NR]WaM& �$*0,A*B/%*21 (with

� M � S [� W, M , S [, W#b , ScZ / W\b , WPZ / S/ M / Sc[/ W b / S Z , W b / W Z , S7 � :H���E* � :d1fe �g�h! � S�� :=1 Si�j��J4�g��! � W � :=1 W

Thepaperby McCulloughshows thatthehookupof two
processes,eachrestrictivewith respectto level 	 , is another
processalsorestrictive with respectto level 	 . This is the
justificationfor calling restrictivenessa hookupproperty.

Wewill takeamulti-levelsecureprocessto beonewhich
is restrictive with respectto every level 	 . Multi-level secu-
rity is thenalsoa hook-upproperty.

4 Verification UsingGypsy

Considerwhat it might meanto requirethe propertyof
restrictivenessof aGypsyprocedure.Wewill notattemptto
relateformally thesemanticsof processesdescribedabove
to thesemanticsof Gypsyprocedures.Instead,we will ar-
gueinformally thatthereis aconnection.Wehavemodeled
the designof SDOSin Gypsy asa collection of cobegun
procedurescommunicatingvia buffers. We want to asso-
ciatethe input andoutputeventsdescribedabove with the
(Gypsy)actionsof sendingandreceiving from abuffer. As-
sertionsabouttraceswill thenbecomeassociatedwith as-
sertionsabout(Gypsy)buffer histories.

How mightoneverify in Gypsythehook-uppropertyof
restrictivenesswith respectto anarbitrarylevel 	 ? Thereare
two basicproblems:

1. The Gypsy embedded-assertionapproachto stating
correctnessconditionswill only allow assertionsabout
the propertiesof singletracesin isolation. More pre-
cisely, Gypsyembeddedassertionsareall of theform:

7 � :=1@* R$�k�X�
whereR is somepredicateovereventsequenceswhich
containsno quantifierovereventsequences.Notethat
eachprogramvariable is a function of the past se-
quenceof events,andsorelationsamongprogramvari-
ablesfall into this form. The propertyof restrictive-
nessis morecomplicated,sinceit requiresoneto show
theexistenceof a trace,giventheexistenceof another
trace.Theembedded-assertionmethodis notdesigned
to do this.

2. Thepropertyof restrictivenessrequiresaprocessto be
input-total,i.e., alwaysreadyto acceptanotherinput.
This is never true of proceduresdescribedin Gypsy,
whichacceptinputsonly at “receive” statements.

The solution to the secondproblemis to associateone
or moreunboundedbuffers with eachGypsyprocedureof
thedesign.Thecombinationof a Gypsyprocedureandits
associatedbuffersformsaninput-totalprocess.

The solutionwe give hereto the first problemhastwo
parts.First,we defineseveralsimplerrequirements,which,

whenplacedonaprocess,imply thatthepropertyof restric-
tivenessholdsfor thecombinationof thatprocessandits as-
sociatedbuffers.Themostimportantof thesewill becalled
“weak non-interference”(WNI). This propertyis very sim-
ilar to the Goguen-Meseguersecuritypolicy [3], in that it
preventsonefrom deducingthatunseenhigher-level inputs
haveoccurred.It differsfromGoguen-Meseguerin that:de-
terminismis notassumed;it isdefinedpurelyin termsof the
setof tracesof the processratherthanin termsof internal
states;responsesto inputsarenotrequiredto happenimme-
diately after the inputswhich causedthem. We show that
weaknon-interference,plusdeterminism,plustheproperty
thata tracemustexist in responseany setof inputs,plusthe
couplingof a processwith unboundedbuffers,is sufficient
to imply thepropertyof restrictiveness.

Second,we show how to prove weak non-interference
in certainparticularcases.The techniquepresentedis not
general;it is easyto find examplesof Gypsy procedures
satisfyingWNI whichcannotbehandledin thisway. How-
ever, we have beenableto apply it successfullyto several
examplesof trustedobjectmanagersin theSDOSdesign.

4.1 Inferring restrictivenessfr om WNI

Definition 5 A process & �$*-,.*0/%*-1 (satisfiesthe property
of weak non-interference(WNI) with respectto level l
iff for everytrace, there is anothertraceall of whoseinputs
arevisiblebelowlevel 	 , andwhich exhibitsthesamevisible
behavior.

7 � :=1@* O � F :d1@* � F !P	GM���!P	D�I��JK� F ! , ! 	GM & (?
The propertyof weaknon-interferenceis weaker thanre-
strictiveness,andit is not a hook-upproperty.

Definition 6 A process& �$*-,.*0/%*-1 (is input-li ve iff theset
I is nonemptyandanytracemaybeproperlyextendedinto
anothertraceendingin an input. Thatis,

7 � :<1@* O �Xl :<1@* �]lm�'�;�I��JK	k�n�����k�]lI� :<,.?
Definition 7 A process& �$*-,.*0/%*-1 (is input-uni versal iff,
whenit is possibleto acceptsomeinput, any input maybe
accepted.Thatis,

7 � :=1@* 7 � S * � W :<,.* �
 & � S (:=1>� �
 & � W (:<1@?
Definition 8 A process& �+*-,.*0/%*21 (is deterministic iff
7 � :H���E* 7 � S * � W :=�$* �
 & � S (:<1 �I��JK�
 & � W (:<1o�

�k�jp * �)q :<, ��� r"���Ip * � q : , �I��JK� S M�� W � .
Note that this form of determinismis too strongto be

appliedto input-totalprocesses.An input-totalanddeter-
ministicprocesswouldneveroutputanything.

Why is WNI weaker thanrestrictiveness?WNI allows
one to remove all high-level inputs from a trace,without
disturbinglow-level behavior. Restrictiveness,on theother
hand,allowsoneeitherto removeor insertsuchinputs.The
following theoremshowsthataddingauxiliaryconditionsto
WNI will strengthenit sufficiently to allow arbitraryhigh-
level inputs to be insertedin a trace. The theoremsays
that if a processsatisfiesall the previously-statedproper-
ties of this section,thenit is possibleto alter its sequence
of high-security-level inputsarbitrarily without alteringits
low-security-level inputsandoutputs(althoughthe output
sequencemayneedto beextended).

Theorem1 If the process & �+*-,.*0/%*21 (is input-live, and
-universal, and is deterministicand satisfiesweak non-
interferencewith respectto level l, then

7 � *98;:H���E* 7 � :H,��)* �
 8s:=1 �j��J
�m!L	�M 8 ! , !P	 �

O 8 F :<� � * �
 8 F :=1 �I��J8 F�! , M��<�I��J8 F�!P	G� 8 !P	
This and the following theoremwill be given without

proof. However, theproofof theorem1 proceedsroughlyas
follows. We aregivena trace �
 8 , andwish to altersome
of the high-security-level inputs to

8
. Input-livenessand

input-universalityimply that theremustexist a new trace,
�
 8 F , in responseto thesenew inputs.WNI appliedto �
 8
andto �
 8 F , givesnew traceswith thesamelow-security-
level behavior andno high-security-level inputs.Therefore
thesetraceshaveexactly thesameinputs.Determinismim-
pliesthatthey have thesamebehavior, andthereforethat

8
and

8 F exhibit thesamebehavior at low security-levels.

Definition 9 Theprocess& �$*-,.*0/%*-1 (is an infinite buffer
iff there is a one-to-oneandontomappingt<��u#v ,d��w/

,
and

7 � :H� � * � :=1>e 7 � FQx � * t<��u � �k� F ! , �c�'� F ! /
In addition,thebuffer preserveslevel l iff

7yC :<,.* C : 	 e t<��uX� C � : 	
Note that every infinite buffer is input-total,and if it pre-
serveslevel 	 , thenit is alsorestrictive.

In thefollowing theorem,theseobjectswill appear:

 anarbitrarylevel l;

 a nonemptyarrayof � infinite bufferswhich preserve
l, z{S *N?N?�?�* za| , with buffer z�} = & � } *-, } *0/ } *-1 }k(, , } Z/ }XM�~`� and ���M�� ��� } Z �i� M�~j� ;

 process��M & �$*0,A*B/%*21 (, with
, M��+� }��]SB������� � |E� / }

and
� b , Z � }]M�~j� ;

 process��M���_Nz�S`_ ?N?�? _�za| , theconcurrenthookup
of all the processes. � M & � � *-, � *0/ � *-1 ��(
where

–
� ��M � [� � }��]SV������� � |E� � } ;

–
, ��M � � }��]SV��������� |E� , } ;

–
/ ��M /

;

– � :=1 � if f ��! ��:=1
and ��! � } :=1 } for all i.

Theorem2 If A is input-live, -universal,deterministic,and
satisfiesWNI with respectto l, then W is restrictivewith
respectto l.

This theoremis the result which allows us to convert a
proof of restrictiveness,(and henceof hook-upsecurity),
into simpler proofs of WNI, determinism,input-liveness,
and -universality. The process� , which is the hook-up
of � with a setof infinite buffers,will be input-totalsince
eachbuffer is. The process� neednot be input-total,and
whendescribedin Gypsy, it will neverbe.As in theorem1,
theauxiliary assumptionson � allow theinputsto � to be
modifiedwithout alteringits visible behavior. Theproof of
this theoremcanbefoundelsewhere[10].

4.2 Relating the Theoremto Gypsy

Supposea Gypsyprogramis composedof a cobegin of
proceduresandacollectionof infinite Gypsybuffersvisible
to thoseprocedures.EachGypsybuffer will beassociated
with exactly oneGypsy procedure;a procedurewill only
receive messagesfrom buffers with which it is associated.
Furthersupposethateachprocedureis of theform:

loop
await

each i:integer,
on receive mesg from buffer(i)
then
body(mesg);

end;
end;

whereeachbuffer[i] is an unboundedGypsy buffer asso-
ciatedwith this procedure. The code‘body’ containsno
“receives”,andit maycontain“sends”to buffersassociated
with otherprocedures.

Thenwe may (informally) apply theorem2 to this sit-
uation, treatingeachbuffer as a process,and treatingthe
Gypsyeventsof “sending”and“receiving” from buffersas
the eventsreferredto in the theorem.The communication
betweentheprocedureandits associatedinputbuffersis as-
sumedto obey therulesdescribedin thedefinitionof hook-
up. Wecanthenclaimthatthisprocedureandthecollection
of buffers associatedwith it arerestrictive with respectto
level 	 if we show:

 that eachbuffer preservesl: this holds trivially if we
give levelsto messagesin eachbuffer. Let a predicate
Jj� t=�����I�9��J bd�V��b 	 bedefinedonthesetof messages,
and let a buffer “send” or “receive” be an event at a
level lessthanor equalto 	 if andonly if themessage
sentor receivedsatisfiesJI� td�����I�9� J b#�V�mb 	 ;

 input-universality: this is guaranteedsince all input
eventsoccurvia the‘await’ statement;

 input-liveness:thiswill beguaranteedif canshow that
‘body’ mayterminatefor eachpossiblesetof precon-
ditions;

 determinism:this is guaranteedin any Gypsyproce-
durewhich makesno cobegins,eitherdirectly or indi-
rectly, throughcalls to otherprocedures.This canbe
checkedpurelysyntactically;

 weak non-interferencewith respectto level 	 for the
procedure:demonstratingthis will be the goal of the
following section.

We have previously notedthat WNI is similar in flavor
to theGoguen-Meseguersecuritypolicy. A paperby Haigh
and Young [5] usedan unwinding theoremto reducethe
Goguen-Meseguerpolicy to assertionson Gypsyvariables.
The variablesrepresentedthe abstractstateof the Secure
Ada Target (SAT). We chosenot adaptthis approachto
WNI, but ratherattemptedto verify the WNI propertydi-
rectly.

4.3 Verifying WNI UsingGypsy

Weaknon-interferencestatesthatfor every trace� there
is anothertrace �XF which bearsa certain relation to � .
Showing that �XF exists will require,in effect, runningtwo
copiesof theproceduresimultaneously– therealonewith
the completehistory of inputs, and anotherone with no
high-security-level inputs. The latterwill be referredto as
the purgedhistory, andit will be generatedfrom the input
sequence�U! , !$. The verificationis thena demonstra-
tion that the completeandpurgedhistorieshave identical
behavior at low securitylevels,i.e., that ��!P	GM^�XF�!P	 .

We will needto transforma designexpressedin Gypsy
into anotherGypsyprogramwith theappropriateassertions.
The reasonfor the programtransformationis to make two
copiesof every variablein the original design. Not only
internal programvariables,but also buffer variablesmust
beduplicated.In this way we cangeneratesimultaneously
both the actualrun of the design,and the purgedhistory.
The assertionsgiven in the transformedprogramwill in-
cludeat leastthestatementthatthecontentsof buffer histo-
ries,takingonly eventslessthanor equalto level 	 , will be
equal.

We assumethattheprocedureis of theform

loop
await

each i:integer,
on receive message from buffer(i)
then
body;

end;
end;

where ‘body’ hasno receives. In practicethis seemsto
be a simplebut usefulform in Gypsyfor modelinga non-
terminatingprocedurecommunicatingwith other entities.
We considerGypsyprogramfragmentsbody composedof
thecommands:=, if thenelse,send,case,loop,andsubpro-
cedurecalls.Eachprocedurewill bea branchof a cobegin,
but cobegin statementswill not be allowed within ‘body’,
sincesucha cobegin will introducenon-determinismand
thusinvalidateoneof theassumptionsof theorem2.

Given sucha program,the way to generatethe purged
history is simply to ignore thoseinputs of high- (or not
comparable-) securitylevel:

loop
await

each i:integer,
on receive message from buffer(i)
then
if message.level le l then

body;
end;

end;
end;

Sincewewantto comparehistories,wemustrun thesepro-
gramssimultaneously:

loop
await

each i:integer,
on receive message from buffer(i)
then
body;
if message.level le l then

MESSAGE’ := message;
INSEQ’ := INSEQ’ :< MESSAGE’;
BODY’;

end;
end;

end;

wherebody’ is thesameasbodybut with adisjoint,primed,
setof variables,whosevaluessimulatethe stateunderthe
purgedhistory. Inseq’simulatestheinputhistoryassociated
with thepurgedhistory.

We mustshow that thetwo communicationhistoriesfor
this procedure,purgedfor level 	 , arethe same.If thereis

only oneoutputbuffer, andif purge(b,l) isaGypsyfunction
which representsthe projectionof event sequence� with
respectto 	 , i.e., � !�	 , thenit is enoughto verify the loop
assertion:

assert
purge(outto(outbuf,myid), l) =
purge(outto(outbuf’,myid), l);

Becausethis assertionmusthold at eachinput in the his-
tory, the purged input sequencemust be interleaved with
thepurgedoutputsequencein thesamemannerin bothhis-
tories.It is thereforesufficienteventhoughnoexplicit men-
tion of inputsis made.

If thereis morethanoneoutputbuffer, it is notsufficient
to prove that the low-level outputsto eacharethe samein
the two histories,sincerelative orderof outputsis impor-
tant.Gypsyimplicitly providesfor mergingof buffer histo-
ries;however, its VC generationfacilitiestreatthismerging
asthoughit werebasedonorderof arrival at thebuffer pro-
cesses,not on the order of departurefrom the procedure
itself. To handlemorethanoneoutputbuffer, new sequence
variablesmustbeintroducedto recordtherelative orderof
outputsatthesendingprocedure.(Note:delaysbetweenthe
time a messageis sentby a processandthe time it arrives
atabuffer violatetheassumptionsgivenin thedefinitionof
hook-up.However, new infinite buffer processespreserving
	 maybeintroducedto accountfor thedelaywhile retaining
the semanticsof hook-up. Sincethesenew infinite buffer
processesarerestrictive, their presencewill not changethe
securitypropertiesof theentiresystem.)

In principle, proving the assertionsdescribedabove is
all that is required. However, in practiceauxiliary asser-
tions on internalvariablesareuseful. It will be sufficient
to show that,at all comparableplacesin theprogramsbody
andbody’, certainvariablesfrom each(e.g. those ��) are
related(e.g. equal). So not only mustthe loopsbe run si-
multaneously(bodyandbody’ within oneloop), thebodies
themselvesmust be run simultaneously. Sincethey refer
to disjoint setsof variables,their stepscanbe intertwined
in any manner, so long as the order within eachprogram
is unchanged.We will give somepracticalmethodsfor in-
tertwining bodyandbody’ andgeneratingusefulauxiliary
assertions.While this intertwining is not strictly necessary
for proof, it will almostalwaysreducethe numberof exe-
cutionpathsto behandledby theGypsyVC generator.

First wemustmovebodyinsidethescopeof theif state-
ment:

loop
await

each i:integer,
on receive message from buffer(i)
then

if message.level < l then

MESSAGE’ := message;
INSEQ’ := INSEQ’ :< MESSAGE’;
body;
BODY’;

else body;
end;

end;
end;

We now describeoneinductive methodfor unifying the
programfragmentsbody and body’ into a new program
fragmentmergedbody,whichhasthesameeffectonall pro-
gramvariablesbut containsauxiliaryassertionsrelatingthe
primedandunprimedvariables.This methodproducesas-
sertionswhich maybesufficient, but arenot necessary, for
the verification of the assertionson buffer histories. The
descriptionof the methodis phrasedasan algorithm that
inputsbodyandoutputsmergedbody.

To Merge Thefollowing algorithmfor merging program
bodiesis definedinductively on thestatementsin body:

If thenext stepin bodyis a:=b, doin mergedbody:a:=b;
a’:=b’ .

If the next statementin body is sendx to y, thendo in
mergedbodysendx to y; sendx’ to y’ .

If the next statementis an if-then-else,let it be of the
form:

if x then y;
else z;

Do in mergedbody

assert x iff x’;
if x then y; y’;

else z; z’;

If thenext statementis a loop, let it beof theform:

loop
if x then y;
else z; leave;
end;

end;

Do in mergedbody

loop
assert x iff x’;
if x then y; y’;
else z; z’; leave;
end;

end;

If thenext statementis a casestatement:

case x
...
is yi then zi;
...

do

assert x=yi iff x’=yi’;
case x
...
is yi then zi; zi’;
...

Finally, if thenext statementin bodyis subprocedurecall
SP(var), thendo

SP(var);
SP(var’);

To Finish The programbodiesaremergedto the extent
thatthenew assertionsgeneratedcanbeverified. More so-
phisticatedstepscanbe addedto the algorithmfor special
cases.Thefinal programwhich resultsis

loop
await

each i:integer,
on receive message from buffer(i)
then

if message.level le l then
mergedbody;

else
body;

end;
end;

end;

5 Conclusions

We have presenteda method for verifying an MLS
hook-upsecuritypropertyusing Gypsy. The MLS prop-
erty will form the basisfor mandatorysecurity in a Se-
cureDistributed OperatingSystem(SDOS).The verifica-
tion methodreducesa proof of the McCullough hook-up
securityproperty to proof of a non-interferenceproperty
(WNI), plusauxiliaryassumptions;a techniquefor demon-
stratingWNI in Gypsyis givenfor certaincases.

Using this method,we have beenable to verify WNI,
andthushook-upsecurity, for Gypsydescriptionsof some
SDOSobjectmanagers.The primary drawbackof the ap-
proachis theneedto transformadesignexpressedin Gypsy
into an alternateform in which assertionscan be given.
This is tediousanderror-prone;presumablyaVC generator
whichautomatedthestepof programtransformationwould
eliminatethis drawback.

Futurework alongthe lines given in this paperwill in-
volvegeneralizingthenotionsandtoolsmentioned.In par-
ticular, theMLS policiesused,restrictivenessandWNI, rule
outall covertchannelsnotbasedontiming information,and
thereforeincludeno meansfor describinglimited amounts
of informationdowngrading.However, somelimited covert
channelsareusuallytoleratedin any detailedsystemdesign.
Thepoliciesmustbegeneralizedto includethis possibility.

6 Acknowledgement

The authorswould like to thankDaryl McCulloughof
ORA for insight into themeaningof hook-upsecurity, and
Steve Vinter of BBN for many useful discussionson dis-
tributedsystemdesign.

References

[1] D. Bell andL. LaPadula. Securecomputersystems:Uni-
fiedexpositionandMultics interpretation.TechnicalReport
MTR-2997,Revision 2, MITRE Corp.,Bedford,MA, Mar.
1976.

[2] S.Brookes,C. Hoare,andA. Roscoe.A theoryof commu-
nicatingsequentialprocesses.J. ACM, 31(3),1984.

[3] J. Goguenand J. Meseguer. Securitypolicy and security
models.In IEEE Symp.SecurityandPrivacy, 1982.

[4] D. Good et al. Reporton Gypsy 2.05. Technicalreport,
ComputationalLogic, Inc., Austin,TX, Oct.1986.

[5] J.HaighandW. Young.Extendingthenon-interferencever-
sionof MLS for SAT. In IEEESymp.SecurityandPrivacy,
1986.

[6] A. Jones. The objectmodel: A conceptualtool for struc-
turingsoftware.In Bayer, Graham,andSeegmuller, editors,
Operating Systems,An AdvancedCourse. Springer-Verlag,
1978.LectureNotesin ComputerScience.

[7] D. McCullough. Specificationsfor multi-level securityand
a hook-upproperty. In IEEE Symp.Securityand Privacy,
1987.

[8] R. SchantzandR. Thomas.CRONUS,a distributedoperat-
ing system:Functionaldefinitionandsystemconcept.Tech-
nicalReport5879,BBN Labs,Jan.1985.

[9] S.T. Vinter, D. Weber, et al. A securedistributedoperating
system.In IEEESymp.SecurityandPrivacy, 1988.

[10] S. T. Vinter, D. Weber, et al. Thesecuredistributedoperat-
ing systemproject. TechnicalReport6144,BBN Labsand
Odyssey ResearchAssociates,Feb. 1988.

